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ARTICLE

A scalable approach to characterize pleiotropy
across thousands of human diseases and complex
traits using GWAS summary statistics

Zixuan Zhang,!* Junghyun Jung,! Artem Kim,! Noah Suboc,! Steven Gazal,!234
and Nicholas Mancuso!/2/3,4*

Summary

Genome-wide association studies (GWASs) across thousands of traits have revealed the pervasive pleiotropy of trait-associated genetic
variants. While methods have been proposed to characterize pleiotropic components across groups of phenotypes, scaling these ap-
proaches to ultra-large-scale biobanks has been challenging. Here, we propose FactorGo, a scalable variational factor analysis model
to identify and characterize pleiotropic components using biobank GWAS summary data. In extensive simulations, we observe that
FactorGo outperforms the state-of-the-art (model-free) approach tSVD in capturing latent pleiotropic factors across phenotypes while
maintaining a similar computational cost. We apply FactorGo to estimate 100 latent pleiotropic factors from GWAS summary data of
2,483 phenotypes measured in European-ancestry Pan-UK BioBank individuals (N = 420,531). Next, we find that factors from
FactorGo are more enriched with relevant tissue-specific annotations than those identified by tSVD (p = 2.58E—10) and validate our
approach by recapitulating brain-specific enrichment for BMI and the height-related connection between reproductive system and
muscular-skeletal growth. Finally, our analyses suggest shared etiologies between rheumatoid arthritis and periodontal condition in
addition to alkaline phosphatase as a candidate prognostic biomarker for prostate cancer. Overall, FactorGo improves our biological un-

derstanding of shared etiologies across thousands of GWASs.
Introduction

Genome-wide association studies (GWASs) have identified
thousands of genetic variants that associate with complex
traits and diseases affecting multiple traits.' Investigating
this pervasive pleiotropy has enabled elucidating broader
biological mechanisms, identifying comorbidity due to ge-
netic susceptibility, and discovering or repurposing of ther-
apeutic targets.”°

Previous works have proposed methods to identify
pleiotropic components under two related, but distinct,
camps of approaches. The first camp is to apply
matrix factorization techniques (e.g., truncated singular
value decomposition [tSVD]) on a matrix of GWAS sum-
mary data.”” While matrix factorization provides a
computationally efficient means of capturing apparent
pleiotropic components, its model-free approach leaves
unclear what parameters are inferred from noisy observa-
tions (in this case, effect-size estimates). The second
camp of approaches is based on statistical models for ge-
netic effects but is limited to the analysis of a small num-
ber of traits due to computational demands.''* As
more GWAS summary data become available in large
biobanks,'*™'® it is important to develop a scalable
model-based approach that allows exploring the phe-
nome-wide shared genetic architecture, either known
or unknown, to be genetically related a priori. Classical

factor analysis provides an analogous approach toward
summarizing shared latent factors in data; however,
inference in high-dimensional biobank settings is
computationally demanding, thus limiting the scope of
applied analysis.

Here, to identify latent pleiotropic components
across thousands of phenotypes, we present FactorGo,
a factor analysis model on genetic associations using
GWAS summary data. FactorGo models the uncertainty
in genetic effect estimates and leverages an automatic
relevance determination (ARD) prior to prune uninfor-
mative factors using a scalable variational Bayesian
framework. Under extensive simulations, we find that
FactorGo outperforms tSVD in reconstructing trait factor
scores and is robust to model misspecifications. By
analyzing thousands of phenotypes in Pan-UK Biobank
(Pan-UKB), we identify alkaline phosphatase (ALP) as a
candidate prognostic biomarker for prostate cancer
(PCa). Moreover, we recapitulate previously reported
brain-specific enrichment for BMI and reproductive sys-
tem and muscular-skeletal enrichment for height. For
disease traits, we learn the shared bacterial etiology be-
tween rheumatoid arthritis (RA) and periodontal condi-
tion. Taken together, our results demonstrate that
FactorGo prioritizes biologically meaningful latent pleio-
tropic factors, which reflect shared biological mecha-
nisms across traits.
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Material and methods

FactorGo model

Here, we briefly describe the FactorGo generative model of
observed GWAS summary data assuming correlations in effects
arising due to pleiotropy. For a full account, please see details in
Note S1. Briefly, FactorGo assumes observed Z scores (i.e., Z;) are
sampled around the scaled true genetic effects (i.e., v/N;8;), which
are decomposed into latent pleiotropic factors (i.e., 8; = Lfi+ w;
see Figure 1). Formally, we model Z scores at p independent vari-
ants from the i ™ GWAS Z; as a linear combination of k shared
latent variant loadings Le RP*K with trait-specific latent factor
scores f; € R**! and sampling variability ¢; as

Zi= Nt = VR +a = V] (Zkaik+u> ‘e
k

where N; is the sample size for the i th GWAS, p is an intercept that
reflects a global mean effect size across studies, and ¢; ~ N(0,771I,)
reflects sampling variability around the estimate with residual het-
erogeneity across studies as precision scalar 7. In genome-wide
data, we expect nearby summary statistics to be correlated due
to linkage disequilibrium (LD); however, here, we assume data
have been pruned to approximately independent variants. Given
Z = {Z;}{_, and model parameters L,F, u, 7, we can compute the
likelihood as

C(L.F,u,1Z) = H:;lN(Z,-’\/Z\_T,-(Lﬁ + u),fllp) .

Consistent with probabilistic principal-component analysis
(PCA) and similar approaches, we assume a standard normal prior

n
over latent factors for each trait as F ~ HN (fi | 0,I). Next, to
i=1
model our uncertainty in L, u, we take a full Bayesian approach
similar to a Bayesian PCA model.'® Namely, we assume loadings

for each SNP are sampled from a normal prior, L

j=1
diag(a)™!), where « is a kx1 vector reflecting the prior precision
along each factor dimension. Similarly, we place a normal prior
on the shared intercept u ~ N(0, ¢~ 1I,), where ¢ is the prior
precision.

By modeling the intercept u and loadings L as being sampled
from normal distributions with precision parameters (¢ and «,

P
o~ HN(zi( 0,

Figure 1. Overview of FactorGo

FactorGo decomposes the observed Z-score
summary statistics of p variants in n traits
to k pleiotropic factors.

The column vector of L is variant loadings
and row vector of F is the trait factor score
for each inferred factor as highlighted in
light blue. Here, we plotted forn = 5,p =
7, and k = 3 for illustrative purposes. To
identify traits characterizing a given factor,
we calculated contribution scores of this fac-
tor across all traits (top arrow). To under-
stand the biological function of a given fac-
tor, we regressed transformed variant
loadings on cell-type-specific annotations
using LD score regression (bottom arrow).
The colors on transformed scores represent
the magnitude of values.
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respectively), FactorGo shrinks estimates toward 0. Rather than
require users to specify « a priori, we use ARD'° to “shut off” unin-
formative factors, thus minimizing overfitting when k is misspeci-
fied, which is equivalent to placing a prior over « as « ~ [[G(ax,
by), where the expected shrinkage effects E(ax) on loadings are in-
ferred from data. Altogether, FactorGo reflects a model where each
SNP contributes to each latent dimension (albeit adaptively
shrunk toward zero), and each trait has a representation across
each latent dimension (albeit learned from the shrunken loadings
projected onto the observed data).

Lastly, we place a prior over the shared residual variance across
GWASs as 7~ G(a,,b;) to capture the average residual variance
due to non-linear genetic effect or shared environment across
GWASs. We impose broad priors by setting hyperparameters
¢ =ay =bg =a, =b, =105,

Variational inference

Given our FactorGo model and observed Z-score summary data, we
would like to infer the posterior distribution of parameters L,F, u, «,
7. Unfortunately, there is no closed form expression for learning the
posterior exactly, and thus, we leverage variational inference to infer
an approximate posterior distribution.'®'” Let D be the observed Z
score and respective GWAS sample sizes. In brief, the true posterior
distribution P(L,F,u,«, 7 | D) is approximated by a factorized trac-
table distribution from the conjugate families

P(L,F, p, 0, 7| D)= Qu(L D) Qe (F[D) Qu( | D) Qu(@|D) (7| D),
where Q.( -) reflects a surrogate approximating posterior for indi-
vidual model parameters. The optimal functional forms for each
Q and respective variational parameters are identified by maxi-
mizing the evidence lower bound on the marginal likelihood
(i.e., ELBO). During inference, variational parameters are updated
iteratively until convergence. The model outputs estimates of pos-
terior means and variances of L, F, u, «, 7.

To further improve the scalability of our approach, we apply a
parameter expansion design that converges more rapidly.'®
Namely, after each iteration step, the latent space F is centered us-
ing a weighted mean, and L is orthogonalized to reduce coupling
effects of latent parameters (see Note S1). We implemented
FactorGo in Python using just-in-time (JIT) compilation through
the JAX package (see web resources), which generates and com-
piles heavily optimized C++ code in real time and operates seam-
lessly on CPU, GPU, or TPU (see data and code availability).
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Simulations

To evaluate the performance of FactorGo and tSVD, we performed
simulations under a polygenic additive model. Specifically, for i
study, we generated a p-vector of true SNP effects §; as a linear
combination of k latent factors §; = Lf; , where the values of L, f;

2
were generated from Ly ~ N (0, m) and fi ~ N(0,1), where

je [p]. The minor-allele frequency was sampled from s; ~ U(0.01,
0.5). For simplicity, we fixed the intercept u to zeros. Given SNP her-
itability hﬁ, the total simulated variance in outcome Y was Var(Y;) =

1/hZ +3(8; + 255(1 — 5;))%. Then, residuals of each SNP effect in

each study became ‘7"21 = Var(Y;) — (B = 2s;(1 — s,»))z. Assuming

the genotype was centered but not standardized, then the standard
€ITOrS were SE,.Z,. = ‘Tizj J{Ni = (2s;(1 —s,-)+(23,)2)} on the per-allele
unit, where GWAS sample size N; was sampled empirically from
2,483 Pan-UKB studies in real data analysis (Figure S1). Finally,

we added Gaussian noise to generate observed SNP effects B; ~

MVN,(Lf;, X)) for ie [n], where the diagonal values of X; were SE,~,2.
Observed Z-score summary statistics were calculated as ﬁ,»,- / EE\,, .

For each simulated dataset, we applied tSVD and FactorGo on
standardized observed Z-score matrices with size nxp to compare
their reconstruction error on true latent parameters. Standardiza-
tion was applied to columns such that each SNP vector had zero
mean and unit variance. Assuming the true model was consistent
with FactorGo model and the true number of latent factors k was
known, we explored extensive scenarios by varying four different
parameters: (1) number of traits #; (2) number of independent
causal SNPs p; (3) number of true latent factors k; and (4) additive
SNP heritability h§ . Each simulated scenario has 30 replications.
Next, we examined the influence of model misspecification under
four conditions: (1) misspecified number of latent factors; (2)
correlated standard errors due to GWAS sample overlap; (3) no
latent factors (i.e., no pleiotropy) and only correlated standard er-
rors; and (4) correlated test statistics due to moderate LD after LD
pruning. Lastly, we examined the robustness of FactorGo across a
grid of five hyperparameters regarding prior distributions.

Metrics for simulation
We evaluated the accuracy of FactorGo and tSVD across several
metrics. First, to evaluate the accuracy in reconstructed SNP effects
matrices B = LF, we calculated the Frobenius norm between esti-
mates and ground truth, i.e., ||[B — L F||. For tSVD decomposition
USVT, we defined F=USandL = VS. Second, we evaluated the
accuracy in estimating variant loadings L and factor scores F. To
account for rotation and scaling in inferred parameters, i.e.,
(LR)(R-! F) can give the same data likelihood where RR-! = I,
we performed procrustes analysis to align the parameters with
their ground truth. Briefly, given matrices A and B, procrustes anal-
ysis'? aims to find a rotation matrix R and scaling s term such that
ming ||A — SRB |§ subject to RR™! = I. Here, we applied procrustes
analysis on the inferred loading matrix L to learn an optimal
rotation R and scaling factor s and then computed L = LRs and
calculated a final reconstruction error as ||L — L. Using the
same rotation matrix R and scaling factor s, we computed F =
(sR)™'F and calculated reconstruction error as ||F — F|| P

When no latent factors existed and test statistics correlated
across studies due to residual confounding, we applied Levene’s
test to compare the variance of inferred parameters. The motiva-
tion is that if non-zero error correlation induces false discovery
of latent structures, then we expect the variance of 1/ E(«) (or ei-

genvalues) to deviate from the null of constant variance, i.e.,

2 —
‘7,72:0 - Jpz =0.1

— 2
= .. =0, g

Quality control on traits from Pan-UKB

Out of the total 7,200 traits from up to 420,531 European individ-
uals in the Pan-UKB (version 04/11/22; UK Biobank application
number 68459; see web resources), we selected traits with number
of cases >1,000 for binary traits and total sample size >1,000 for
quantitative traits. Pan-UKB ran GWASs using scalable and accu-
rate implementation of generalized mixed model (SAIGE) to
obtain accurate p values for studies with a highly imbalanced ratio
of case groups to control groups.”” For continuous traits, we chose
GWAS results under inverse rank normal transformation to correct
for outcome distribution. For categorical traits, we selected disease
outcomes (Table S1). As a result, the final list consisted of 1,677 bi-
nary and 806 quantitative traits (see manifest file in Table S6),
spanning a wide spectrum of trait domains including diseases,
medications, environmental exposures, physical and biomarkers
measures, etc. We categorized all 2,483 traits into nine distinct
groups based on the description of UKB field ID (Table S1). We
observed marked differences in total sample size across traits,
with mean 403,306 for binary traits and 183,577 for quantitative
traits (Figure S1).

Quality control on genetic variants from Pan-UKB

We filtered ~28 million autosomal variants by INFO score >0.9
(imputation accuracy score), minor-allele frequency >1%, high
quality (PASS variant in gnomAD), and high-confidence variants
(not extremely rare variants) defined by Pan-UKB (Figure S2).
Then, we excluded the human leukocyte antigens (HLAs) region
(chr6:25,000,000-34,000,000 [hg19]), indels, and multi-allelic
variants. To ensure pleiotropic components across variants, we
included SNP variants associated with at least two traits using
p-value threshold SE—08. Lastly, we applied LD pruning through
Hail software using the in-sample LD correlation matrix with win-
dow size of 250 kb and r? < 0.3 (see web resources). These quality
check (QC) steps led to a Z-score data matrix of 51,399 variants by
2,483 traits. 0.002% missing values in Z scores were imputed using
SNP means. For subsequent functional interpretation, we focused
only on variants included in the 1,000 Genomes Project with
functional annotation data®! (see web resources).

Analyses of Z-score summary data

We implemented both FactorGo and tSVD to learn k = 100 latent
factors and compare their findings. For FactorGo, we used broad
priors by setting all hyperparameters to be 1E—0S. For tSVD, we
applied the TruncatedSVD function from sklearn python package
with 20 iterations of randomized states (see web resources). The
columns of Z-score data matrix in size nXp were centered and stan-
dardized. The inferred factors were ordered by variance explained
in observed data for FactorGo (i.e., R?) and by singular values for
tSVD (see Note S1). To show robustness of inferred factors subject
to the choice of k, we performed additional analysis using k = 90,
110, respectively, and compared the top two factors and three
leading factors for focal traits in case studies.

Case studies

To validate results and discover biological insights, we highlighted
four traits: BMI and standing height as characteristic polygenic
traits, RA as a representative autoimmune disease (a family of dis-
eases known to have substantial shared genetic basis), and PCa as
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the second most common cancer for men worldwide with under-
explored shared architecture with other traits. For each trait, we
characterized the three respective leading pleiotropic factors and
compared results between FactorGo and tSVD.

Interpreting inferred parameters

To interpret the inferred parameters for latent factors and loadings,
we transform estimates using previously described contribution
and cosine scores.” To rank factors according to their relevance
for a focal trait, we define the squared cosine score as

=2 =2
2 _
cos; = Fy; / ZFk’.i
o

where F, ki is the posterior mean of the k th factor score for the i th
trait, standardized by its posterior variance (to account for uncer-
tainty around the mean estimate), i.e., Fx; = Fy;/\/Var(Fg,).
This standardized contribution score upweights traits with greater
sample size that provides more certainty (Figure S3). For this fac-
tor, we calculated contribution scores, respectively, defined as fol-
lows to rank all traits and all variants (Figure 1):

, ~ 2 ~ 2
Cntrk,,-f”“ = Fyi /ZFK,-,
7

cntrk,,»‘”” = Lp»kz ZLp’,kZ
I3

Higher contribution score means that the trait is better charac-
terized by this factor or the variant has larger effect to this pleio-
tropic factor. To understand the shared biology characterized by
a factor, we describe an approach to test for enrichment in func-
tional annotations using factor loadings in the following section.

Enrichment analysis on variant loadings

To interpret shared biology characterized by inferred factors at the
tissue- or cell-type resolution, we downloaded 205 LD score regres-
sion applied to specifically expressed genes (LDSC-SEG) annota-
tions for variants in 1,000 Genomes Project*'** (see web re-
sources). The annotations are genes specifically expressed in 205
tissue or cell types (e.g., brain vs. non-brain cell types). Because
the variants were LD pruned to satisty FactorGo model assump-
tion, we leveraged LD score for these variants to collect tagging
functional variants, which led us to use stratified LD-score regres-
sion (S-LDSC) software for annotation enrichment analysis. To
leverage the machinery of S-LDSC*?** (see web resources) for iden-
tifying enriched annotation in variant factor loadings, we first
transformed the loadings to Z-score scale. To achieve this, we
defined a pseudo sample size for each factor as a weighted sum
of GWAS sample sizes N/ — Scosk;? P -Nj. Then, we created

1
a pseudo Z score by multiplying \/NI**“-L;; as the Z-score input

for S-LDSC software. This pseudo sample size N also specifies

the sample size for LDSC. The LD scores were calculated using n =
489 European ancestry individuals from 1,000 Genomes with win-
dow size of 1 cM. Additionally, the LD scores for regression SNPs
were calculated separately as the weight for S-LDSC.

We ran S-LDSC on loading-based Z scores against each anno-
tation to identify enriched tissue or cell type (Figure 1), condi-
tioning on baseline annotations described elsewhere.”” We
used flag —n-blocks 4000 to obtain a more accurate standard error

with 4,000 jackknife blocks instead of the default 200 because
analyzed SNPs were LD pruned. We calculated q value to control
factor-wise false discovery rate (FDR) <0.05 using the gvalue R
package by fixing 2 = 0, which is equivalent as Benjamini
Hochberg adjusted p value (web resources). Note that the null
distribution of p values from S-LDSC is not uniform because it
is a one-sided test for positive coefficient, and thus it is not
appropriate to estimate the proportion of null hypothesis using
the g-value method.”* To demonstrate that our S-LDSC
approach is well calibrated, we created 10 non-overlapping an-
notations for randomly selected gene sets from ~20,000 genes
and computed the enrichment of these annotations over all fac-
tors at FDR <5%. To compute the specificity of enriched tissue
or cell types between inferred factors, we calculated all pairwise
Jaccard indexes. Briefly, the Jaccard index measures the similar-
ity between two sets A,B by J(4,B) = }ﬁsg}, which is the ratio of
the number of shared elements over the total number of unique
elements.

LDSC analysis for leading traits

To illustrate the benefit of learning shared genetic components us-
ing FactorGo compared with pairwise analysis of traits, we first
examined how factor scores between trait pairs reflect their genetic
correlation. For each of the 20 leading traits linked to a focal trait
in its leading factor, we calculated their factor score correlation
and genetic correlation using LDSC. To showcase the consistency
or difference in enrichment analysis between joint model and sin-
gle-trait analysis, we repeated the LDSC enrichment analysis using
genome-wide variants for each of the 20 leading traits for each
leading factor.

Results

Method evaluation in simulations under model
assumptions

We assessed the performance of FactorGo in learning latent
parameters across different simulated genetic architectures
and compared results with tSVD as a baseline.

First, we found that FactorGo outperformed tSVD, ex-
hibiting lower reconstruction error in trait factor scores F
across all simulated scenarios (Wilcoxon p = 3.64E—109;
Figures 2A and S4). Moreover, we observed the FactorGo er-
ror in trait factor scores F decreased with the increasing
number of traits (p = 2.09E—24; Figure S4A) and number
of true latent factors (p = 7.30E—26; Figure S4C). Error in
F remained roughly constant across varying numbers of
causal SNPs (p = 0.99; Figure S4B) and average SNP herita-
bility (p = 0.36; Figure 54D).

Second, although error of variant loading L was not
significantly different between FactorGo and tSVD (p =
0.29; Figure 2B), we found FactorGo error decreased with
increasing number of traits (p = 5.22E—15; Figure S4A),
number of true latent factors (p = 1.40E—23; Figure S4C),
and average SNP heritability (p = 0.071; Figure S4D). The
error in loadings increased with increasing causal SNPs
(p = 8.40E—06; Figure S4B). The accuracy in genetic effect
B estimation was not statistically different between
FactorGo and tSVD (p = 0.10; Figure 2C).
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Overall, our simulations demonstrate FactorGo provides
similar estimates of model parameters as tSVD, with a sig-
nificant improvement of trait factor scores.

Method evaluation in simulations under model
misspecification

Next, we sought to assess the performance of FactorGo un-
der various settings reflecting model misspecification. First,
we investigated when the specified k differs from the true
number of latent factors. When the true number of latent
factors k = 10, FactorGo performed similarly as tSVD in
estimating trait factor scores F across varying k from 2 to
20 (p = 0.21; Figure 3A). However, FactorGo provided
more accurate estimates in trait factor scores F than tSVD
(p = 0.027) when k is underspecified (k < 10) compared
with when k is overspecified (k > 10; Figure 3A). For
variant loading L, the error was not significantly different
between FactorGo and tSVD (p = 0.25; Figure 3B). Interest-
ingly, the estimates for genetic effects B were more accurate
in FactorGo (p = 0.047) across different k, especially when
k was overestimated (p = 2.48E—17; Figure 3C).

Second, when standard errors and test statistics are
correlated due to non-zero LD between SNPs, we observed
that FactorGo consistently outperformed tSVD in recon-
structing trait factor scores (p = 3.04E—78; Figures S5A-
S5C). FactorGo was robust across varying magnitudes of
correlated standard errors in estimating trait factor scores
(p = 1.00) and variant loadings (p = 0.93; Figure S5A),
whereas their combined predicted effects were less resil-
ient. Importantly, when p? matched values estimated
from real data (average 0.057; SD = 0.25; Figure S6A),
we observed a less-pronounced effect on inferential bias
(Figure S6B). Third, when no latent factors exist and corre-
lated standard errors across traits due to unmeasured con-
founding (i.e., shared environment), we found little evi-
dence of latent factor signals in 1/E(«) from FactorGo
(p = 1.00) or eigenvalues from tSVD (p = 1.00;
Figure S5D), suggesting both approaches are robust to
this confounding.

Lastly, we evaluated the sensitivity of FactorGo to
choices of five hyperparameters involved with « (i.e., prior
loading variance), u (i.e., average SNP effect), and 7 (i.e., re-
sidual heterogeneity). For each of the scenarios, we found

FactorGo

tiles. The length of each whisker is 1.5 times
the interquartile range. All values lying
outside the whiskers are considered to be
outliers.

tSVD

FactorGo was robust to varying choices of these values in
estimating true effects (p = 0.96), trait factor scores (p =
0.93), and variant loadings (p = 0.90; Figure S7).

Overall, our simulation results demonstrate that
FactorGo accurately identifies latent representation of
traits when k is underestimated, when test statistics across
SNPs are correlated due to LD, and when standard errors
are correlated across traits due to unmeasured confounding
(i.e., shared environment).

FactorGo improves interpretation of the pleiotropic
components of 2,483 UKB traits

Having demonstrated the performance of FactorGo in sim-
ulations, we next characterized 100 pleiotropic factors of
2,483 real traits from the Pan-UKB (mean N = 331,980;
see web resources). We selected traits by their case group
or total sample size >1,000. Initial screening on ~28
million variants by INFO >0.9 and minor-allele frequency
>1% resulted in 8,449,689 high-quality common variants.
We retained 7,624,608 biallelic non-HLA SNP variants and
found 1,037,929 of them associated with at least two traits
at p value < SE—08. Next, we subsetted to 1,023,655 vari-
ants with LDSC-SEG annotation data followed by LD prun-
ing with window size of 250 kb and r? < 0.3. Finally, we
constructed a matrix of GWAS Z scores at 51,399 non-
HLA LD-pruned SNP variants across each of the 2,483 traits
(see material and methods). On average, each GWAS trait
has 109 (SD = 541) significant variants. We applied
FactorGo and tSVD to the QCd Z-score matrices to learn
100 pleiotropic factors. Both methods required approxi-
mately the same amount of runtime (~10 min for
FactorGo on 2 GPUs; Figure S8) and explained similar
amounts of variance in observed data (38.07% vs.
37.76%). For each method, we ranked factors by the pro-
portion of variance explained. For FactorGo, we confirmed
the robustness of posterior variance estimates by observing
the entropy of posterior covariance was smaller for traits
with larger sample size (Figure S9).

First, we reported the projection of all traits over the top
two FactorGo pleiotropic factors in Figure 4. Factor 1 was
driven by body weight and basal metabolic rate, and factor
2 was driven by human standing height. We obtained
similar patterns for tSVD factors (Figure S10). Interestingly,
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only FactorGo implied the shared comorbidity of
COVID-19 with BMI-related traits in factor 1, an associa-
tion that has been reported previously.”> Characterization
of factors 1 and 2 is given in the section “characterizing
shared biology in FactorGo pleiotropic factors” below.
Other leading factors were primarily driven by traits with
higher heritability compared with factors that explained
less Z-score variance (p = 1.99E—17 and 2.99E—18, respec-
tively; Figure S11), which is consistent with heritability re-
flecting variation in allelic effect sizes. Additionally, as a
proof of concept, we showed that the factor score correla-
tion between leading trait-focal trait pairs tracked closely
with their genetic correlation for four focal traits discussed
later (Figure S12), which validated that FactorGo model
effectively decomposed the genetic correlation across

10 1
Standing height IMT_150degrees
Basal metabolic rate | 1 FEV1 IMT_120degrees
5 -
Weight v1]  (IMT_210degrees
g COVID-19_v3
g Weight_v2
LA
01 oo COVID-19_v4
category
O BIN
T
_5 - Q
T T T T
-5 0 10

factor 1

Figure 4. The top two factors in FactorGo characterize traits
involved with body weight and height, respectively

We report the projection of 2,483 UK Biobank traits over the top
two FactorGo pleiotropic factors. Error bars were 2 times the
square root of posterior variance for trait factor scores and plotted
only for highlighted traits. Binary (BIN) and quantitative (QT)
traits were colored differently. FEV1, forced expiratory volume in
1 second; IMT, mean carotid intima-medial thickness; Weight_v1,
amalgamated measure of weight by multiple means; Weight_v2,
weight measured during impedance measurement. COVID-
19_v3 and v4, tested for COVID-19 positive in two different
waves.

traits. This consistency decayed for factors in lower rank
(FSS5, F86) as there was less variation explained by those
factors.

Second, by quantifying and ranking the relative impor-
tance of pleiotropic factors related to a trait using squared
cosine scores (see material and methods), we observed that
the cumulative squared cosine score for each trait was
higher in FactorGo than in tSVD at each rank of pleiotropic
factor (p < 0.05/99; Figure S13). To evaluate the sufficiency
of these 100 factors in explaining genetic associations from
observed data, we found the variance explained by each
factor leveled off quickly for both FactorGo and tSVD
(Figure S14A). The posterior mean of prior precision
parameter « tracked closely with the variance explained
by each factor, suggesting that FactorGo successfully
shrunk less-informative factors (Figure S14B). Finally, to
show robustness of FactorGo results with respect to choice
of k, we performed additional analysis using k = 90 and
110. The top two latent factors were highly consistent in
20 leading traits and 10 leading variants across k = 90,
100, and 110 results (Figure S15).

Third, we evaluated the ability of FactorGo and tSVD to
identify relevant shared biology demonstrated by
computing tissue-specific enrichment of factor-specific
loadings using S-LDSC (see material and methods; we
note that this method was well calibrated under FDR
<5%; Figure S16). Overall, we found that the S-LDSC coef-
ficient Z statistics were higher in FactorGo compared with
those from tSVD (mean 0.051 vs. —0.042, p = 2.58E—10;
Figure S17). Of the 100 FactorGo factors, we observed
that 69 were enriched with at least one tissue or cell type
at factor-wise FDR <5%, in contrast with only 40 when us-
ing tSVD. FactorGo factors were enriched with seven tissue
or cell types, on average, and spanned 191/205 tissue or
cell types compared with 130/205 from tSVD (p =
6.59E—13). To show specificity of enriched tissue or cell
types between inferred factors, we calculated all pairwise
Jaccard indexes and found the mean similarity for
FactorGo is 0.030, which is lower than 0.045 in tSVD
(p = 9.37E-04).

Altogether, our results demonstrate that FactorGo iden-
tifies biologically meaningful pleiotropic components at
the tissue- and cell-type resolution.
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Characterizing shared biology in FactorGo pleiotropic
factors

To characterize the pleiotropic factors identified by
FactorGo, we analyzed the leading factors of four represen-
tative traits: BMI, height, RA, and PCa. For each trait, we
identified its most relevant factor using squared cosine
scores, identified the other traits leading this factor using
contribution scores, identified the genetic variants leading
this factor using contribution scores, and characterized the
biology of this factor using S-LDSC on 205 tissue- and cell-
type-specific annotations (see material and methods). To
ensure that inferred loadings meet the assumptions
required for valid S-LDSC analyses, we inspected the linear
relationship between LD scores and transformed loadings
(pseudo Z scores) for four leading factors associated with
four focal traits and found consistent representation
(Figure S18), thus supporting the validity of our approach.
We assessed that our results were overall consistent across
k =90, 100, 110 (Figures S19-S22).

BMI is characterized by factor 1, associated to brain cell
types

The leading factor for BMI was factor 1 (squared cosine
score: 58.85%), which was characterized by body weight
(contribution score: 2.32%), basal metabolic rate (2.08%),
and body fat masses (cumulative 17.74% across 13 traits;
Figure 5A; Table S2). The leading variants were proximal
to genes such as WRN associated with Werner Syndrome
(and thus short stature and abnormal fat distribution?®;
1s2553268:G>T: 0.026%) and TMEM]18 associated with
obesity (rs13029479:G>A: 0.024%; 1574676797:G>A:
0.024%).%” Out of the 33 tissues and cell types significantly
enriched in factor 1, 31 were brain cell types including the
limbic system and hippocampus (Figure 5A), which is
consistent with previous findings of brain-specific enrich-
ments in BMI genetic data.”*” This brain-specific enrich-
ment was also concordant with leading trait enrichment
analysis (Figure S23). The next two leading factors for
BMI (factors 4 and 7) identified its shared biology with
pharynx and digestive tissues, respectively (Note S2;
Figure S24). We performed the same analysis using results
from tSVD and found no enrichment of cell types in the
leading factor for BMI, despite similarly characterized
body fat traits (Figure S25).

Standing height is characterized by factor 2, associated
with musculoskeletal tissues

As the leading factor for standing height, factor 2 (squared
cosine score: 38.67%) characterized leading traits as
standing height (7.36%), sitting height (5.41%), and
body fat masses (1.39%; Table S2). These associations
were driven primarily by an intron variant in height-asso-

ciated gene HMGA2 (1s343086:T>C: 0.04%).7%?° As ex-
pected, factor 2 exhibited enrichment for musculoskeletal
tissues such as cartilage and chondrocytes (Figure 5B).
Additionally, we replicated enrichment for reproductive
organs such as uterus and cervix.””*" This result is also
consistent with prior work demonstrating that overex-
pression of HMGA?2 alters production of growth hormone
in mice®’ in addition to reproductive tissue develop-
ment.*” These enrichments in factor 2 were also concor-
dant with leading trait enrichment analysis (Figure S26).
The next two leading factors for height suggested a shared
biology with cardiovascular tissues and immunity,
respectively (Note S2; Figure S27). For tSVD, we found
its leading factor similarly characterized height traits
but did not exhibit evidence of cell-type enrichment
(Figure S28).

RA leading factor is driven by inflammatory mechanisms
For RA, factor 86 (squared cosine score: 7.17%) was ex-
plained primarily by inflammation-related traits (Fig-
ure 5C) such as blood albumin level (1.57%), blood calcium
level (1.40%), methotrexate (a common treatment for
RA; 1.39%), osteoporosis conditions (cumulative 5.52%
across five traits; Table S3), and other autoimmune diseases
such as inflammatory bowel disease (0.96%).°* %> We
found these signals were driven by variants proximal to
genes MFAP4 (rs139356332:G>C: 0.036%) and IP6K2
(rs28867111:G>A: 0.033%), both of which are involved
with inflammatory mechanisms.***’ Interestingly, we
observed factor 86 exhibited enrichment in periodontium
and mouth (Figure 5C), which is supported by prior epide-
miological evidence of common periodontal conditions in
individuals with RA due to autoantibodies and arthritis
triggered by oral pathogens.*® Interestingly, these enrich-
ments in factor 86 were not found in single-trait enrich-
ment analysis (Figure S29), which is likely caused by under-
powered disease traits in biobank studies. Our selection in
variants includes the pleiotropic variants with the strongest
signals that can be overwhelmed by the genome-wide un-
derpowered background in single-trait analysis. The next
two leading factors for RA (factors 75 and 76) suggested a
shared biology with mechanisms in the kidney, liver, and
central nervous system (Note S2; Figure S30). Different
from FactorGo, the leading factor for RA from tSVD charac-
terized insulin-like growth factor 1 (IGF-1) measure and
cardiac disorders but not enriched with any cell types
(Figure S31).

PCa leading factor identifies ALP as a PCa candidate
biomarker

For PCa, the leading factor was factor 55 (squared cosine
score: 17.94%), characterized by diseases in prostates,

LDSC-SEG annotations (truncated to 10 if more than 20 enriched annotations). See detailed result in Table S4. FEV1, forced expiratory
volume in 1 second; FVC, forced vital capacity; Weight_v1, amalgamated measure of weight by multiple means; Weight_v2, weight
measured during impedance measurement; BMI_v1, BMI estimated by impedance measurement; BMI_v2, BMI estimated based on

weight and height; NOS, not otherwise specified.
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including hyperplasia of prostates (1.13%) and inflamma-
tory diseases in prostates (1.63%) (Figure 5D). The leading
trait was ALP level in blood (10.47%), associated to the lead-
ing missense variant in ALPL (c.224G>A [GenBank:
NM_001177520.3] [p.Arg75His] [rs149344982: 0.061%)]).
Because ALP is an enzyme mostly produced by the liver
and bone, this factor was indeed enriched with genes
specifically expressed in the liver. Previous work found
higher serum ALP was associated with poor overall survival
rate of individuals with PCa, which likely reflects bone met-
astatic tumor load.*” Similarly, liver enrichment in factor 55
was consistent with leading trait enrichment analysis
(Figure S32). The next two leading factors for PCa (factors
1 and 58) suggested shared comorbidities of PCa involved
with BMI and hormonal disorders (Note S2; Figure S33),
which is consistent with previous works investigating die-
tary risk factors*” as well as the well-documented role of hor-
monal dependency due to expression of androgen recep-
tor.*! Different from FactorGo, the leading factor for PCa
from tSVD prioritized corneal resistance factors, geographic
home locations, and heel bone measures (Figure S34). Addi-
tionally, tSVD results displayed enrichment for genes ex-
pressed specifically in colon, suggesting alternative shared
biological mechanisms compared with FactorGo.

Discussion

In this work, we presented FactorGo to identify and charac-
terize pleiotropic components across thousands of human
complex traits and diseases using Z-score summary statis-
tics. Our method enables investigating the phenome-wide
shared genetic components while appropriately modeling
uncertainty in variant effect estimates. When applied to
2,483 phenotypes from the UKB individuals, we found
that FactorGo factors explained more variance on average
and were more powerful in identifying shared biology
compared with tSVD factors. We validated brain-specific
enrichment for BMI factors as well as muscular-skeletal
and reproduction enrichment for height factors. For disease
traits, FactorGo suggests a shared etiology between RA and
periodontal conditions. Moreover, we found ALP as a
candidate but less-established biomarker for PCa, which
provided evidence for further experimental validation.

FactorGo has several advantages compared with the scal-
able but model-free approach tSVD. First, FactorGo learns
pleiotropic factors at similar computational cost by
leveraging state-of-the-art variational inference and fast
python implementation. Second, we showed using simula-
tions that FactorGo outperformed tSVD in estimating trait
factor score under model assumption and model misspeci-
fication such as correlated standard errors due to GWAS
sample size. Third, in real data analyses, we found more
enrichment of tissue or cell types in FactorGo factors
than in tSVD factors.

We note that the aims of FactorGo are similar with recent
approaches seeking to partition shared and distinct genetic

architectures across multiple traits using GWAS summary
data. First, tSVD applies a matrix decomposition on
the observed Z-score summary statistics matrix directly
to identify latent genetic components,” whereas
FactorGo seeks decomposition of the true genetic effects by
modeling the uncertainty around genetic effect estimates.
Second, GenomicSEM is a flexible framework that identifies
SNPs with effects specific to one or a subset of traits.'” In
contrast, the SNP effect on traits in the FactorGo model is
only through factors that characterize shared geneticliability
across relevant traits, where the relevancy is ranked by trait
factor scores. Lastly, pleiotropic decomposition regression
(PDR) parses apart different underlying SNPs across factors
that characterize putative mechanisms by a parsimonious
decomposition.'” In contrast, FactorGo attempts a parsimo-
nious explanation by employing an ARD prior that penalizes
factor loadings plus orthogonalization of factors under
parameter expansion design. Overall, FactorGo provides a
scalable probabilistic framework to characterize the latent ge-
netic components shared across human complex traits by
leveraging widespread pleiotropy.

Our tool has several implications for downstream
analyses. First, we demonstrated that analyzing phe-
nome-wide GWAS summary statistics from biobanks can
not only recapitulate known shared biology for traits
such as BMI, height, and RA but also nominate candidate
biomarkers in diseases for further clinical evaluation such
as ALP for PCa. This testifies the benefit of enabling
scalability of model-based statistical approaches jointly
analyzing thousands of GWAS summary data from large
biobanks. Second, leveraging factor loadings within
enrichment analysis using differentially expressed gene
annotations allowed us to interpret the biology of a given
factor at tissue- or cell-type level. Our application of
S-LDSC to variant loadings readily allows analyzing other
functional annotations such as chromatin accessibility
and transcriptional factors. In theory, FactorGo can be
applied to phenotype matrix, which leads to a decomposi-
tion of phenotypic, rather than genetic, correlations. Here,
the latent factors underlying phenotypic correlation reflect
both shared environment and genetics, which can be used
as input for downstream Factor GWAS analysis. However,
we note that working with thousands of phenotypes
from hundreds of thousands of individuals requires greater
computational overhead.

Although FactorGo has provided robustness in simula-
tions and rich insights in the analyses of UKB phenotypes,
it has some limitations. First, our method focused on
learning pleiotropic factors from linear genetic effects and
ignored non-linear or epistatic effects. While many lines of
evidence pointed to linear models capturing the bulk of trait
heritability,*>* our results also illustrated rich meaningful
biological insight that could be obtained from linear effects
alone. Second, our model assumes independence of residual
errors, which was unlikely to be true given overlapped sam-
ples in large biobank GWASs. However, we showed in simu-
lation that the estimation of latent parameters was robust to
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error correlation. Third, FactorGo didn’t outcompete tSVD in
estimating variant loadings in our simulations. However, we
provided a probabilistic model to account for heterogeneity
in summary statistics across GWASs without adding extra
run-time cost. Fourth, while our method requires predefin-
ing the number of latent factors k, our simulations have
shown that results are biased if k was fixed to a too-high
value. However, to ensure that this limitation is unlikely to
impact our results, we performed additional analysis using
k=90and 110. The top two latent factors were highly consis-
tentin 20 leading traits and 10 leading variants across k = 90,
100, and 110results (Figure S15). The leading factors for BMI,
height, RA, and PCa were overall consistent in traits
(Figures S19-522). Fifth, in real data analysis, our selection
of variants using genome-wide significance thresholds can
underestimate the degree of pleiotropy due to lack of power,
especially in disease traits. For example, in the case study of
PCa, we did not observe PCa in the top rank of leading fac-
tors, suggesting either PCa has limited shared components
with other traits or lack of power in GWASs to estimate the
variant effects. Despite this, we were still able to recapitulate
known shared biology for BMI, height, and RA using this sub-
set of pleiotropic variants. Similarly, our selection of variants
involved an LD-pruning procedure. While pruning could
limit the functional interpretation of the latent factors, our
gene-set analyses leveraging LD scores computed on a
sequenced reference panel mitigate this issue. We anticipate
that improvement in fine-mapping techniques and ongoing
efforts to perform fine mapping on hundreds of phenotypes
at the biobank scale** should improve variant selection in
the near future. Sixth, FactorGo factors are identifiable only
up to sign, which makes interpretation challenging (e.g.,
risk increasing/decreasing). Here, we validated biological
interpretability of factors using enrichment analysis for traits
with better-understood genetic components such as height
and BMI. Despite this limitation, FactorGo factors estimated
from phenome-wide data can help generate hypotheses for
experimental validation. Seventh, unlike other methods
based on non-negative matrix factorization,* our model
did not distinguish between varying directional effects of
pleiotropic factors but rather focused on non-directional
summary of pleiotropic effects. Eighth, recent works have
highlighted that shared effect sizes across traits might be
driven by assortative mating.*> Further investigation is
required to see how it impacts the interpretation of our re-
sults. Lastly, although our method was developed for sin-
gle-ancestry analysis, it can be extended to multi-ancestry
data and learn shared genetic components. Taking it a step
further regarding the model and subsequent interpretation,
it is also possible to incorporate functional annotation as
priors so that interpreting functional enrichment a posteriori
is more straightforward.

In conclusion, FactorGo provides a variational Bayesian
factor analysis model on GWAS summary statistics to learn
and characterize pleiotropic factors across thousands of
human complex traits and diseases. It allows rich biolog-
ical interpretation at tissue- or cell-type-specific level.

Data and code availability

e The accession number to GWAS summary statistics
and results reported in this paper are available on Zen-
odo: https://zenodo.org/record/7765048

e Original GWAS summary statistics are available on
AWS cloud. Please see details on website of Pan-UKB
(https://pan.ukbb.broadinstitute.org/) and download
links in Table Sé6.

e In-sample LD correlation matrix for Europeans
released by Pan-UKB is available on AWS cloud: s3a://
pan-ukb-us-east-1/1d_release/UKBB.EUR.ldadj.bm

e FactorGo software: https://github.com/mancusolab/
FactorGo

o FactorGo analysis code: https://github.com/mancusolab/
FactorGo_analysis

Supplemental information

Supplemental information can be found online at https://doi.org/
10.1016/j.ajhg.2023.09.015.
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Supplemental Note 1

1 Overview

Conventional factor analysis model decomposes the variance- covariance matrix of observed data into com-
mon variance due to shared latent factors and specific variance!. Both common and specific variance are
estimated from data. To leverage the uncertainty estimates SE2 in effect sizes from GWAS summary
statistics, we extended the conventional factor analysis to use observed standard error as specific variance
in Gaussian distribution. Taking a step further under reasonable assumptions, we simplified this SNP effect
model to Z-score model (FactorGo). Under a Bayesian hierarchical model, FactorGo leverages variational
inference to infer posterior moments of latent parameters. We applied a parameter expansion design to
substantially accelerate convergence rate.

2 FactorGo model

2.1 Notation

We denote matrices in uppercase bold (e.g., X), vectors in lowercase bold (e.g., x), and scalars in italicized
lowercase (e.g., z). Further, we denote the i column of matrix X as column-vector x;, and the j** row of
matrix X as as column-vector x/. We denote the transpose of a matrix as X' and vector as x'.

2.2 Model

Let BZ be a p x 1 vector of effect size estimates at p variants from GWAS trait ¢ and let 3 represent the
p X p diagonal matrix containing squared standard errors. We model the estimated SNP effects for trait ¢
as

Bi ~ N (Lf; + p, 7'7127;),

where L is a p x k factor loading matrix shared by all n traits, f; is the k x 1 latent factor scores for trait i,
i is a p x 1 intercept vector. Conditional on shared loadings L and latent factors f;, we assume residuals
are independent such that the off diagonals of 3, are zeros. In practice, ,BZ can be correlated due to linkage
disequilibrium (i.e. LD) patterns, however we can perform LD-pruning to analyze a subset of variants such
that LD is relatively minimal. Lastly, we let 7 = 0~2 capture any cross-study heterogeneity.

To simplify our model, we standardize effect sizes by pre-multiplying it with its standard errors such
that
o~ N(ETP(LE + ), 77,

S S
Ni2fij(1=fij)°
where f;; is the minor allele frequency at variant j and N; is the i GWAS total sample size. We assume
that allele frequencies at variant j are roughly constant across studies when the underlying population
reflects similar ancestries. Thus this per-variant scaling term can be absorbed into the loading matrix L

and intercept p giving,
z; ~ N(VNi(Lf; + p), 7 IIP)'

where z; = f]l_ Y Q,éi. We note that standard errors for variant j in study ¢ are proportional to



Similar to the Bayesian PCA approach proposed by Bishop 1999 2, we impose full Bayesian treatment to
this factor analysis model. The latent structure modeled by L = [£',... £°]", F = [f},...,f,] and p has
prior distributions as

Pr(p) = N(p|0,67'L,)

Pr(F) = ﬁ/\/(fi 10,1,)

i=1

Pr(L|a)=][N(®# |0, diag(a™"))

j=1

To regularize model complexity, we put automatic relevance determination (ARD) priors on the loading
matrix L such that less informative factors are shrunk towards zero. For each factor ¢, the ARD parameter
o, is proportional to the inverse precision of that factor and modeled as Gamma distribution. The prior
distributions are specified as follows:

Pr(a| aa.bo) = | | ey | s ba)

=

1

Pr(t | a,, b)) =T(1|a,,b;)

Q
Il

2.3 Compare to tSVD

Truncated singular value decomposition (tSVD) is a reduced rank representation of original data matrix
using result of SVD3. The full SVD decomposition for an observed Z-score summary statistics matrix
is:

p
Znsp =USV" = "ws;v/]
i=1

Then tSVD has: .
anp ~ Z LLL'SZ‘VIT
i=1

Unlike model-free tSVD, FactorGo appropriately accounts for the uncertainty in Z-scores due to differential
power of GWAS studies and automatically infer model complexity. If IV; is constant across studies and
71 approaches 0, then we expect FactorGo produce similar result as tSVD.

2.4 Variational Inference
2.4.1 Overview

Considering the large number of parameters to estimate and its scalability to large dataset, we chose
variational inference (VI) over other inference technique such as MCMC to infer posterior distribution of
unknown parameters?. Unlike MCMC that aims to sample from true posterior distribution, VI converts
this estimation problem to optimization problem. Given a choice of a tractable surrogate distribution Q(-)
for the non-tractable true posterior, we solve for the optimal estimates to maximize the evidence lower
bound (ELBO) of marginal log likelihood of data.



Let 0 = (L, F, p, &, 7) contains all unknown parameters, 1 = (aq, ba, a-, b, ¢) be user specified hyperpa-
rameters and outcome Z-score data is Z. Suppose Q(6) is any surrogate distribution for true posteriors, we
can show the ELBO is a rigorous lower bound for marginal data likelihood by Janssen’s inequality:

log P(Z) = log/P(Z,O)dO

= log/Q(O)P(Z ‘)
/Q log >)d0
= FELBO(Q

The difference between log P(Z) and lower bound ELBO(Q) is called Kullback-Leibler (KL) divergence:

log P(Z) — ELBO(Q) = Eq(log P(Z)) — ELBO(Q)

/Q )log P(Z)d6 — /Q )>d9

The relationship between these quantities is:

ELBO(Q) =log P(Z | n) — KL[Q(6) || P(6 | Z,n)]

The complete-data likelihood £(8 | Z,n) is:

£(07 Z | ?7) = PI’(T | ar, bT) PI‘(CX | Qa; ba) PI'(L | a) PI‘(M | ¢) H Pr(i’n | Y, fi7 La o, T, NZ) Pr(fl)

Here we chose a fully factorizable distribution ) from conjugate family such that:
QL. F, o, 7,p) = QL)Q(F)Q()Q(T)Q(1)

The solution for each parameter 6; is found by maximizing the the lower bound with respective to the
following quantity: R
Q(0;) x E_;[log L(Z,0)]

where the expectation is with respect to all parameters except ;.

Using completing squares, we can write out the posterior means and variances for multivariate Gaussian
distribution or Gamma distribution. Here we provide solutions for each Q).



2.4.2 Q(F)

- HN(f’ | mg¢,, V) where
=1

Vi, = (ik + N;E[T]E[L'L]) !

(Ik+N]E ZEMJT>

= <IK + N;E[7] i(Vej + mzjm}ﬁ)

J=1

= V/NE[T|VLE[L]"(z; — /NE[u])

-1

2.43 Q)
Qw) =Nl my, Vo) where
= (p+E[r ZN
m,, = B[]V, ; V/Ni(z: —  NE[LIE[f])
2.4.4 Q(L)

P
= HJ\/’(@j | my;, V) where

j=1

i=1

my; = E[T]Vy, <Z \/EE[E] (Zij — \/N’LE[IJ’J])>

-1



2.4.5 Q(a)

S
Ao = Ay + 5
~ T : T
bak — ba + E[’ek‘ek] =b, dla’g<E[L LD

2 2

1
=ba + 5 ZE[MJ ] ckk)
7j=1
P

1
=b, + 5 ;[Vej + my; m}j}(kzk)

2.4.6 Q(7)
Q(7) =T'(7 | -, b;) where
oD
Qr = ar + -
- 1 —
br=b-+ > El|z; — v/NLf — /Nip|®
1=1
2.4.7 ELBO

After each iteration, calculate ELBO by E[log Pr(Z |0, n)] — KL[Q() || Pr(0|n)], where KL term can be

calculate separately for each parameter.

Data likelihood term:

Ellog Pr(Z | 0,7)]

logHN\/—Lf+\/_u, |9n]

L:
Blog Q)] = E |4 log2r - J1og V|~ 5(¢' - me) V(€ ~ my) 6]
EllogPr(¢’ |n)] =E [—g log 27 — %log |diag(a™ )| — %(Eﬂdiag(a)ﬁj) | 77}
KLIQ(L) [| Pr(L | )] Z [log Q(€7)] — E[log Px(&’ | m)]
F:

KLQ(F) || Pr(F [n)] = ) Ellog Q(f:)] — Eflog Pr(f; | n)]



KL[Q(p) || Pr(pe | n)] = E[log Q(p)] — Ellog Pr(p | n)]

E[log T (g | Ga, ba)] = dq10g(ba) + (Ga — 1)E[log o | Ga, ba] — baE[atk | da, ba] — log T(@a)
Elog T(a | @, ba)] = aa10g(be) + (aq — 1)E[log a | Ga, ba] — baE[a | Ga, ba] — log T(ag)
KLIQ(@) | Pr(a | )] = 3 BlogT (e | . ) ~ Blog T 0 )
Ellog (7 | &y, b,)] = @, log(b,) + (a, — 1)E[log T | dr, by] — b.E[7 | &, b,] — logI'(a,)
E[log (7 | ar,b,)] = a, log(b,) + (a; — 1)Ellog T | dr, b,] — b,E[T | @, b.] — logT(a,)
KL[Q(7) | Px(r |n)] = E[log (7 | a7, b,)] — E[log I(7 | ar, b,)]

2.5 Parameter expansion

The convergence of FactorGo under the above model can be slow because L and F are strongly coupled
in the model, whereas vectors in L and F are assumed to be independent a posteriori for computational
convenience. To speed up inference, we applied a parameter expansion method proposed for variational
Bayesian factor analysis specifically®. The general idea is to introduce auxilliary parameter for bias b
and R in the posterior distribution that are optimized during inference. After each iteration step, we can
jointly update the parameters in L, F, «. Here we provided the updating rule under this transformation
method:

1. First remove bias between F and p

I
=

Q*(F) N(fl ‘ mg;, — b, sz)
1

Q" (p ):./\fu,|m”+Lb,Vu)

.
Il

where

2. Then rotate latent subspace

p
QL) =][[N®¥ |R'my, R'VyR)

J=1

=[N R 'mg, RV RT)

1
Q" (a) = 1;[ T(a | G, bo + 5diag(RTJEQ [L'L]R))



The optimal rotation matrix R can be found by following steps:
let R =UAYV, then U and A are found by eigen-decomposition of:

1
—Eg[FFT] = UA*UT
n

V is found by eigen-decomposition of:

AU'EG[L'LJUA = VDV’

2.5.1 FactorGo algorithm

Algorithm 1: FactorGo with parameter expansion design

Input: GWAS Z-score summary data and sample size

Initialize: aq = by = a, = b, = ¢ =107 E[¢/] = 0,V(#) =1 for all j € [p], ELBOy =0
while ELBO; — ELBO;_1 > 0.001 or ¢ < itryq, do

update mg, Vg

update m,,, V,,

update my, Vy,

update mgy, Vg

find optimal b, R for transformation and update above parameters

update m,, V.

Calculate ELBO
end

Output: return posterior mean and variance of @ = (L, F, u, o, 7).

2.6 FactorGo model identifiablility
The rotation of F and L will not change the data likelihood £(Z | 8,n) because
Z; = /N;(LF; + p) + €, = /N;(LR™)(RF;) + ) + €

where R is orthogonal rotational matrix such that R'R = I. However, this rotation will change the
complete-data likelihood L£(Z, 6 | n7) because of ARD priors on L. The ARD prior creates different scales
on factor loading along each axis as shown below:

1.0 1.0
R-F «—L-R™

w00 /\ | S 00 i B
|/ T

1.0 05 0.0 05 1.0 4.0 05 0.0 05 1.0
Fq Ly

Example of rotation in F and L. The shape of L for two factors is an ellipse, where each factor axis
has a different scale constructed by ARD priors.



2.7 Calculate variance explained R? in observed data

Here we provide formula to calculate variance explained by each factor RZ. For k" factor, and i'" study,
let z; be fitted Z-score value by all factors and igk) be fitted value for k' factor only:

7, = VNE[LE[E] = /N Y E[f|E[£]

2" = /NE[f,E[€]

2

Then calculate R} using total residual error and total variance, where o is canceled:

SSEk _ Z(iz B i,gk)l)TO'_z(ii . ng)/)
TSS =Y #o %%

SSE
TSS

Ri=1-



Supplemental Note 2

Characterizing second and third leading factors for focal traits in FactorGo

BMI

The next two leading factors for BMI identified its shared biology with pharynx and digestive
system respectively (squared cosine score: 17.66%, 2.86%). Factor 4 characterized standing
height (2.88%) and body fat measures (cumulative 22.73% across 13 traits; Figure S24, Table
S2). Two leading variants were proximal to PDE10A (rs9459529:T>C: 0.030%) and IGF1
(rs1113483:T>C: 0.029%), both of which play roles in energy homeostasis and obesity etiology®” .
Factor 4 was enriched with genes specifically expressed in pharynx, which could reflect the
negative association between upper airway size and body fat distribution®. Factor 7 characterized
blood pressure traits that are strongly associated with BMI (25.12% across 25 traits; Figure S24)°.
It was enriched with subcutaneous fat and digestive systems such as the colon and intestines,
which supports obesity as a risk factor for colorectal cancer®.

Height

The next two leading factors for standing height identified its shared biology with cardiovascular
and immunity respectively (squared cosine score: 9.64%, 8.51%). Driven by variant proximal to
TBX20 associated with heart growth (rs702843:G>C: 0.059%)*?, factor 6 exhibited enrichment in
coronary arteries (Figure S27), which is consistent with previous findings of enrichment in
coronary tissues in height associated variants!?!3, Factor 11 was driven by variants closest to
CCL27 and MBL2 (rs2812349:T>C: 0.036%; rs189269936:C>G: 0.036%), both of which are
involved in the immune system!+%, This was supported by its enrichment in nasal mucosa
harboring diverse immune cells. Although the relationship between the immune system and
human growth is unclear, it has been shown there is an energetic tradeoff between immune
function and growth in the Amazonian?®.

Rheumatoid arthritis

The next two leading factors for RA identified its shared biology with kidney, liver and urinary
bladder (squared cosine score: 6.01%, 5.75%). Factor 75 characterized alkaline phosphatase
(2.54%), cardiac (1.81%) and bladder disease (1.16%; Figure S30). The leading variants were
close to ITGA9 (rs73055093:C>T: 0.042%) and IL12B (rs113630578:A>G: 0.041%), both of which
are important for the immune system. This factor showed enrichment in the kidney cortex and
liver, both of which contain high levels of ALP enzymes. This can reflect the comorbidity of RA
involved with liver and kidney disease’!8. Factor 76 characterized traits involved in the central
nervous system such as intervertebral disc disorders (1.28%) and peripheral disorders such as
foot deformities (0.97%; Figure S30). Its enrichment in the urinary bladder could reflect the shared
symptoms of general reactive arthritis.

Prostate cancer

The next two leading factors for PCa identified BMI and hormonal disorder associated with
prostate cancer respectively (squared cosine score: 7.71%, 6.37%). Since factor 2 was identified
as BMI factor (see Result), this supported the impact of obesity on prostate cancer progression
due to inflammation and metabolic mechanisms'®%, Driven by FOXE1 associated with thyroid



https://paperpile.com/c/t4x0ud/S14E+NhKP
https://paperpile.com/c/t4x0ud/Y4IV
https://paperpile.com/c/t4x0ud/2Y2I
https://paperpile.com/c/t4x0ud/iX5U
https://paperpile.com/c/t4x0ud/qqEjz
https://paperpile.com/c/t4x0ud/Kz44+TYhJ
https://paperpile.com/c/t4x0ud/7D3u9+Zz5C0
https://paperpile.com/c/t4x0ud/iZDZ
https://paperpile.com/c/t4x0ud/lRNp+hf0x
https://paperpile.com/c/t4x0ud/L4lg2+apHS

morphogenesis (Figure S33)?!, factor 58 characterized blood-related traits such as
albumin/globulin ratio (2.53%), platelet crit (1.78%) and other hormonal disorders such as
hypothyroidism (1.26%), suggesting the shared mechanisms of PCa involved with hormones.


https://paperpile.com/c/t4x0ud/gddds
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Figure S1. GWAS sample size distribution in Pan-UK Biobank.

Histogram of GWAS total sample size of 2,483 studies from Pan-UK Biobank Europeans (max
N=420,531) by 1,677 binary (BIN) traits and 806 quantitative (QT) traits. In simulation, the
GWAS sample size was sampled empirically from this distribution.
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Figure S2. Summary of genetic variants filtering in real data analysis of Pan-UK Biobank.
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Figure S3. The division of posterior variance in trait contribution score upweight traits
with greater sample size.

For each trait on the plot, we plotted the ratio of its mean contribution score across factors
versus non-adjusted scores (raw). Since traits will larger GWAS sample size tend to have less
uncertainty, so that the division of their posterior variance will upweight trait will larger sample
size.
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Figure S4. FactorGo outperforms tSVD in trait factor scores in each scenario under
model assumptions.

Trait factor score error ||F — F || , variant loading error ||L — L || and Genetic effect error ||B —
LF||r under 4 varying parameters: (A) number of studies (n), fix p = 2000, k = 10, hzg = 0.1; (B)
number of SNPs (p), fix p = 2000, n = 100, hzg = 0.1; (C) number of true latent factors (k), fix
p = 2000, n = 100, h?, = 0.1; (D) SNP heritability (h?,), fix p = 2000, n = 100, k = 10.
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Figure S6. Histogram of residual correlation estimated in all pairwise of 278 Pan-UK
Biobank traits.

(A). For 278 highly heritable traits (h2 Z score > 6), we estimated the residual correlation by
running all pairwise genetic correlation analysis using LDSC and plotted them. The average
squared residual correlation is 0.057 (SD=0.25). (B) Genetic effect error ||B — LF || at varying
residual correlation from 0 to 0.1.
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Figure S7. FactorGo is robust to different choices of hyperparameters in simulations.
Trait factor score error ||F — F || , variant loading error ||L — L ||z and Genetic effect error ||B —
LF||r by hyperparameter specification. For each of the 30 simulated data when fixing p = 2000,
n =100, k = 10, h*; = 0.1, we ran FactorGo using all combinations of 1E-05 and 1E-03 for five
hyperparameters (total 225). The “default” is 1E-05 for all five hyperparameters. Here we
compared the reconstruction errors under default setting versus all other alternative settings.
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Figure S8. FactorGo and tSVD have the same run time for real data analysis of 2,483
traits and 51,399 variants.

In contrast to vanilla FactorGo, the default FactorGo implements a parameter expansion design
(Note S1). JIT (Just-In-Time) is a fast execution of python code through the JAX package (Web
resources). Vanilla FactorGo: implementing FactorGo model without speed improvement by
parameter expansion design, JIT and GPU.
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Figure S9. Traits with greater sample size produces less uncertainty in posterior
estimates.

The entropy of posterior covariance estimates for factor scores in each trait quantifies
uncertainty in posterior mean inference. As expected, traits with greater sample size provides

more certainty in posterior inference and thus have lower entropy values in factor score
posterior covariance matrix.
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Figure S10. Trait factor scores and variant loading scores for the top two factors in

FactorGo and tSVD.

We highlighted 10 leading traits and 10 leading variants (red) for top two factors from FactorGo
and tSVD. F1 and F2 are factor scores. L1 and L2 are variant loadings. Binary and quantitative
traits are colored differently. Weight_v1: amalgamated measure of weight by multiple means;
Weight_v2: weight measured during impedance measurement; FEV1: Forced expiratory volume
in 1-second; IMT: Mean carotid IMT (intima-medial thickness); FVC_best: Forced vital capacity,

best measure.
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Figure S11. Factor scores in top factors are driven by traits with high heritability.
For (A) FactorGo and (B) tSVD respectively, each point is the test statistics Z-score for linear
association between trait factor scores and the observed heritability estimated by LDSC for

2,305 traits with heritability estimates. Blue line is the fitted regression line with gray confidence

band over these 100 points on each plot. This association decay with factor rank.
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Figure S12. Genetic correlation between leading trait and focal trait is consistent with

their factor scores correlation.
For each focal trait, we plotted its genetic correlation with 20 leading traits (displayed in Figure

5) in its leading factor (F1, F2, F86, F55) on y-axis. For this same set of leading trait — focal trait

pair, we plotted their correlation in trait factor scores (standardized by posterior variances)
across 100 factors on x-axis. As expected, factor scores correlation is concordant with genetic
correlation. A regression line is fit to this relationship with grey confidence band.
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Figure S13. Cumulative squared cosine score for each trait was higher in FactorGo than
in tSVD at each rank of pleiotropic factor.

We report the ratio of cumulative squared cosine score of FactorGo versus tSVD on log scale at
each factor rank for each trait. The squared cosine score sums to 1 for each trait so that this ratio
approaches logl=0 as rank increases. Red line is the mean of the ratio at each rank across traits.
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Figure S14. Variance explained by FactorGo factors tracks closely with posterior mean of

ARD parameters a.

(A) Variance explained (R?) by each factor from FactorGo and tSVD. The factors are ordered by
R? for both methods. (B) Variance explained (R?) by each factor in FactorGo versus their
posterior mean of ARD prior parameter a.
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Figure S15. Top two leading factors in FactorGo are robust to choices of k.
A: Compare 20 leading traits and 10 leading variants in factor 1 across k = 90,100,110 from left

to right.
B: Compare 20 leading traits and 10 leading variants in factor 2 across k = 90,100,110 from left

to right.
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Figure S16. QQ plot of enrichment P values for randomly selected gene set annotations.
To show our implementation of S-LDSC is well-calibrated for both (A) FactorGo and (B) tSVD,

we compared P values distribution from S-LDSC enrichment results of 10 randomly selected
gene sets to theoretical quantiles. Gray regions are pointwise confidence bands. Given the
randomly selected gene sets of size ~2000 genes may be not truly “null”, there is some
deviation from null distribution.
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Figure S17. FactorGo factors show higher enrichment Z test statistics than tSVD.
Violin plot and embedded boxplot of enrichment Z test statistics (one-sided test) from S-LDSC
results for 205 annotations across all 100 factors for each method.

17



F1: Limbic system F2: Uterus F55: Liver F86: Periodontium

0.026 +

226 0.055
17.5 = 2

c
© 2.00 4 0.050 = 0.024
D 150
El
1]
c 0.045 <
8 1254 145
| 0.022 +
N
N 0.040 4
10.0 o 1.50 4 o9
[ ] -
M 0.035 0.020 4 Qe
T T T T T T T T T T T T T T
o ® & & ,.LQO °o & @ L ,LQQ o S R\ oY
L2_bins_mean L2_bins_mean L2_bins_mean L2_bins_mean

Figure S18. Pseudo-Z score has linear association with annotation LD scores.
For each pair of the leading factor and the leading enriched annotation for four focal traits, we
calculated the mean squared pseudo-Z score in 50 binned annotation specific LD score bins.
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Figure S19. Three leading factors for BMI in FactorGo are robust to choices of k.
Compare 20 leading traits in three leading factors in FactorGo results using (A) k =90, (B) k =

100, (C) k = 110.
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Figure S20. Three leading factors for height in FactorGo are robust to choices of k.
Compare 20 leading traits in three leading factors in FactorGo results using (A) k =90, (B) k =

100, (C) k = 110.
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Figure S21. Three leading factors for RA in FactorGo are overall robust to choices of k.
Compare 20 leading traits in three leading factors in FactorGo results using (A) k =90, (B) k =

100, (C) k = 110.
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Figure S22. Three leading factors for PCa in FactorGo are overall robust to choices of k.
Compare 20 leading traits in three leading factors in FactorGo results using (A) k =90, (B) k =

100, (C) k = 110.
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Figure S23. The leading factor for BMI shows consistent brain tissue enrichment with
leading trait enrichments.

We plotted —log;o(qvalue) of enriched tissue at FDR < 0.05 for the leading factor (F1), BMI
trait, and 20 leading traits.
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Figure S24. Characterizing three leading factors in FactorGo for BMI.

Results for factor 1, 4 and 7 (row) include 20 leading traits, 10 leading variants with closest
gene, and enriched LDSC-SEG tissue or cell type (truncated to 10 if more than 20 enriched
annotations). Dashed lines are FDR threshold at 0.05. Detailed results in Table S4.
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Figure S25. Characterizing three leading factors in tSVD for BMI.
Results for factor 1, 2 and 4 (row) include 20 leading traits, 10 leading variants with closest
gene, and enriched LDSC-SEG tissue or cell type. Dashed lines are FDR threshold at 0.05.

Detailed result in Table S5.
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Figure S26. The leading factor for standing height shows consistent tissue enrichment
with single trait enrichment.

We plotted —log,o(qvalue) of enriched tissue at FDR < 0.05 for the leading factor (F2), height,
and 20 leading traits.
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Figure S27. Characterizing three leading factors in FactorGo for height.

Results for factor 2, 6 and 11 (row) include 20 leading traits, 10 leading variants with closest
gene, and enriched LDSC-SEG tissue or cell type. Dashed lines are FDR threshold at 0.05.
Detailed results in Table S4.
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Figure S28. Characterizing three leading factors in tSVD for height.
Results for factor 2, 1 and 8 (row) include 20 leading traits, 10 leading variants with closest
gene, and enriched LDSC-SEG tissue or cell type. Dashed lines are FDR threshold at 0.05.

Detailed results in Table S5.
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Figure S29. The leading factor for RA identifies novel shared tissue enrichment that is
not found using single trait genome-wide variants.

We plotted —log,y(qvalue) of enriched tissue at FDR < 0.05 for the leading factor (F86), RA
and 20 leading traits.
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Figure S30. Characterizing three leading factors in FactorGo for RA.
Results for factor 86, 75 and 76 (row) include 20 leading traits, 10 leading variants with closest
gene, and enriched LDSC-SEG tissue or cell type. Dashed lines are FDR threshold at 0.05.

Detailed results in Table S4.
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Figure S31. Characterizing three leading factors in tSVD for RA.

Results for factor 59, 69 and 57 (row) include 20 leading traits, 10 leading variants with closest
gene, and enriched LDSC-SEG tissue or cell type. Dashed lines are FDR threshold at 0.05.
Detailed results in Table S5.
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Figure S32. Leading factor for PCa shows consistent liver enrichment with single trait
results.

We plotted —log,,(qvalue) of enriched tissue at FDR < 0.05 for the leading factor (F55), PCa
and 20 leading traits.
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Figure S33. Characterizing three leading factors in FactorGo for PCa.

Results for factor 55, 1 and 58 (row) include 20 leading traits, 10 leading variants with closest
gene, and enriched LDSC-SEG tissue or cell type. Dashed lines are FDR threshold at 0.05.
Detailed result in Table S4.
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Figure S34. Characterizing three leading factors in tSVD for PCa.
Results for factor 53, 95 and 27 (row) include 20 leading traits, 10 leading variants with closest
gene, and enriched LDSC-SEG tissue or cell type. Dashed lines are FDR threshold at 0.05.

Detailed results in Table S5.
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Cancer

Family history

Treatment/Medi
cation/Prescripti
on

Physical
measures

Mental health

Biological
samples (eg.
assay)
Questionnaire
(eg.food intake,
exercise,
environment)

Misc

Type

BIN

BIN

BIN

BIN

QT

QT

QT

QT

QT

Abbreviation

Disease (D)

Cancer

Family history
(FH)

Medication/Pres
cription (MED)

Physical
measures (PM)

Mental Health
(MENT)

Assay

Lifestyle and
Exposure (LIFE)

Miscellaneous
(MISC)

Table S1. Groups of 2,483 phenotypes

Number of
traits

1130

20

26

501

202

94

67

418

25

Example

Type 2 diabetes

Breast Cancer

lliness of
mother, illness
of father

Aspirin

Weight, Pulse
rate

General
happiness,
prospective
memory

Cholesterol,
Monocyte count

Milk intake,
Smoking,
Physical activity

Birth weight,
number of
operations,
home location

UKB Field ID

ICD10,
phecode, self-
reported 20002,
COVID19

self-reported
20001, phecode

20107, 20110

20003, 42039
harmonized

Category
100003,
100006,
derived
variables

Category
100026,
100059, 136

Category
100078

Category
100090,
100025,
113,123



Phenocode Description

22410 Total trunk fat volume
23099 Body fat percentage
23100 Whole body fat mass
23111 Leg fat percentage (right)
23112 Leg fat mass (right)
23115 Leg fat percentage (left)
23116 Leg fat mass (left)

23119 Arm fat percentage (right)
23120 Arm fat mass (right)
23123 Arm fat percentage (left)
23124 Arm fat mass (left)

23127 Trunk fat percentage
23128 Trunk fat mass

Table S2. 13 Body fat mass traits.
Phenocode is a field ID described by UKB.

Phenocode Description

M81 M81 Osteoporosis without pathological fracture
743 Osteoporosis, osteopenia and pathological fracture
743.1 Osteoporosis

743.11 Osteoporosis NOS

20002 self-report.osteoporosis

Table S3. 5 Osteoporosis traits
Phenocode is a field ID described by UKB. NOS: not otherwise specified.
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