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Abstract 14 

Population-scale single-cell transcriptomic technologies (scRNA-seq) enable characterizing variant 15 

effects on gene regulation at the cellular level (e.g., single-cell eQTLs; sc-eQTLs). However, existing sc-16 

eQTL mapping approaches are either not designed for analyzing sparse counts in scRNA-seq data or 17 

can become intractable in extremely large datasets. Here, we propose jaxQTL, a flexible and efficient sc-18 

eQTL mapping framework using highly efficient count-based models given pseudobulk data. Using 19 

extensive simulations, we demonstrated that jaxQTL with a negative binomial model outperformed other 20 

models in identifying sc-eQTLs, while maintaining a calibrated type I error. We applied jaxQTL across 14 21 

cell types of OneK1K scRNA-seq data (N=982), and identified 11-16% more eGenes compared with 22 

existing approaches, primarily driven by jaxQTL ability to identify lowly expressed eGenes. We observed 23 

that fine-mapped sc-eQTLs were further from transcription starting site (TSS) than fine-mapped eQTLs 24 

identified in all cells (bulk-eQTLs; P=1x10-4) and more enriched in cell-type-specific enhancers (P=3x10-25 
10), suggesting that sc-eQTLs improve our ability to identify distal eQTLs that are missed in bulk tissues. 26 

Overall, the genetic effect of fine-mapped sc-eQTLs were largely shared across cell types, with cell-type-27 

specificity increasing with distance to TSS. Lastly, we observed that sc-eQTLs explain more SNP-28 

heritability (h2) than bulk-eQTLs (9.90 ± 0.88% vs. 6.10 ± 0.76% when meta-analyzed across 16 blood 29 

and immune-related traits), improving but not closing the missing link between GWAS and eQTLs. As an 30 

example, we highlight that sc-eQTLs in T cells (unlike bulk-eQTLs) can successfully nominate IL6ST as 31 

a candidate gene for rheumatoid arthritis. Overall, jaxQTL provides an efficient and powerful approach 32 

using count-based models to identify missing disease-associated eQTLs.  33 

  34 



 

Introduction 35 

Large gene expression quantitative trait loci (eQTLs) studies have facilitated interpreting genetic variants 36 

identified in genome-wide association studies (GWAS) through colocalization 1–4 or transcriptome-wide 37 

association studies (TWAS) 5–9. These approaches have been largely dependent on eQTLs discovered 38 

from bulk-RNA sequencing (bulk-eQTLs) on tissue samples 10,11 or on a limited number of cell types 12–39 
14. However, limited overlap between bulk-eQTLs and GWAS risk loci 4,10,15–18 has hindered the functional 40 

interpretation of genetic risk variants and their translation to therapeutic development for human 41 

diseases. Multiple hypotheses could explain this “missing link” between GWAS and eQTLs, including the 42 

lack of disease-relevant cell types/contexts, cell-type-specific eQTL effects diluted in bulk samples, and 43 

limited statistical power to detect weak-effect eQTLs 15,16.  44 

Recent and ongoing generation of large scale single-cell RNA sequencing (scRNA-seq) datasets 45 

allow direct interrogation of these hypotheses by quantifying gene expression across heterogeneous cell 46 

types for a large number of individuals 19,20. For example, the OneK1K project has released scRNA-seq 47 

data from 1.27 million peripheral blood mononuclear cells (PMBCs) of 982 donors 19, with plans to profile 48 

50 million cells in 10,000 donors (TenK10K) 21. A current challenge is thus to efficiently identify single-49 

cell (sc-)eQTLs from sparse counts data in these extremely large datasets. Previous sc-eQTL studies 22–50 
26 have leveraged pseudobulk data and used tools that are designed for bulk-eQTL mapping (e.g., Matrix 51 

eQTL 27, FastQTL 28, and tensorQTL 29). These tools fit linear models after data normalization on the 52 

gene expression matrix 30,31. Although the model fitting step is computationally efficient, the eQTL effect 53 

on gene expression is less interpretable due to the data transformation (e.g., inverse rank transform). 54 

Moreover, for sparse read counts observed in scRNA-seq, transformations are less effective due to sheer 55 

number of zeros 32,33. Recent studies have proposed modelling the expression of single cells by fitting 56 

mixed effect models, either using off-the-shelf R functions 34 or under bespoke software such as 57 

CellRegMap 35 and SAIGE-QTL 36. While these approaches improve upon bulk-eQTL mapping 58 

approaches, they can become computationally intractable for extremely large single-cell datasets 59 

currently being generated at a population scale. In addition to these computational challenges, the 60 

characterization of sc-eQTLs across cell types is further complicated by the differential statistical power 61 

induced by differences in cell abundances. For example, recent work reported sc-eQTLs were largely 62 

cell-type-specific 19, in contrast to higher levels of sharing across cell types when eQTLs were identified 63 

from sorted RNA-seq data 37. Therefore, sc-eQTL mapping and characterization stands to benefit from 64 

scalable and statistically powerful software. 65 

To address these limitations, we propose jaxQTL, an efficient software to perform large-scale sc-66 

eQTL mapping using flexible, count-based models. Under simulations, we found that a negative binomial 67 

(negbinom) model outperforms linear and Poisson models in identifying sc-eQTLs while maintaining 68 

calibrated type I errors. By analyzing OneK1K, we found that jaxQTL with a negative binomial model 69 

identifies more eGenes than other models and existing softwares, such as tensorQTL and SAIGE-QTL. 70 

Importantly, we found that sc-eQTLs effects were largely consistent across cell types, with cell-type-71 

specificity increasing with distance to transcription start site. Finally, we found that sc-eQTLs explained 72 

a greater fraction of heritability for GWAS immune traits compared with bulk-eQTLs, thus improving but 73 

not closing the missing link between GWAS and eQTLs. Taken together, our results demonstrate that 74 

jaxQTL is a scalable tool in identifying sc-eQTLs by analyzing large single-cell datasets to improve the 75 

biological interpretation of genetic risk at disease-relevant cell types. 76 



 

Results 77 

Overview of jaxQTL 78 

We provide a brief overview of jaxQTL model assumptions and inferential pipeline. Given pseudobulk 79 

counts 𝑦𝑐 for a focal gene in a cellular context c (i.e. summed across all cells of type c), covariates 𝑋 80 

(e.g., age, sex, genotyping principal components), and a cis-genetic variant 𝑔, jaxQTL implements a 81 

generalized linear model (GLM) according to, 82 

𝐸[𝑦𝑐 | 𝑋]  =  ℎ(𝑋𝛽 + 𝑔𝛽𝑔 +  𝑙𝑐), 83 

where 𝛽 are the covariate effects, 𝛽𝑔 is the allelic effect, 𝑙𝑐 is an offset adjusting for differences in library 84 

size, and ℎ(⋅) is a function which maps linear predictions to expected values matching distribution 85 

assumptions (e.g., negbinom, Poisson). For example, if we assume a Poisson or negative binomial 86 

distribution, then ℎ ∶=  𝑒𝑥𝑝(⋅), with effect sizes reflecting a change in the transcription rate (or proportion 87 

if including library size offsets). This is in contrast to linear regression performed on the rank-inverse 88 

normal transformed counts, where effect sizes have no direct interpretation of the expression values, but 89 

rather reflect a change in rankings.  90 

Performing cis-association scans using this approach is computationally prohibitive, due to the 91 

sheer number tests required for each gene and cell-type. To address this fundamental limitation, jaxQTL 92 

leverages three key insights. First, jaxQTL performs just-in-time (JIT) compilation provided by the JAX 93 

framework (Web Resources), to translate high-level Python into machine-level instructions optimized for 94 

a specific parallelized architectures (e.g., CPU, GPU, or TPU) with no additional work required from the 95 

user other than a runtime flag. Second, jaxQTL performs a score-test38 for all cis-genetic variants 96 

simultaneously using an optimized block-matrix approach, rather than sequentially. Lastly, jaxQTL 97 

implements multiple recent advances to compute p-values efficiently, which provide trade-offs between 98 

additional scalability and statistical power (e.g., Beta-approximation 28 to permutations or ACAT-V 39; 99 

Figures S1, S2; Methods). We provide a table summarizing the capabilities of jaxQTL alongside other 100 

softwares (Table S1) and have released jaxQTL as open-source software (see Code availability).  101 

Negative binomial outperforms other models in identifying sc-eQTLs in 102 

realistic simulations  103 

We assessed the type I error and power of different models implemented in jaxQTL (jaxQTL-linear, 104 

jaxQTL-negbinom, and jaxQTL-Poisson) and softwares (SAIGE-QTL and tensorQTL) by simulating 105 

single-cell read counts from a Poisson mixed effect (PME) generative model using parameters that reflect 106 

observed expression and overdispersion in OneK1K 30,40–46 (Figure S3, S4). We evaluated model 107 

performance across varying cell type proportions by sampling individual library sizes across three cell 108 

types representing high, medium, and low library sizes (CD4+ naïve and central memory T (CD4NC) cells, 109 

immature and naïve B (BIN) cells, and Plasma cells, respectively; Table S2). We varied sample-coverage 110 

(i.e., the percentage of non-zero expression read counts) across simulations to account for gene 111 

expression intensity across individuals. 112 



 

First, all models exhibited calibrated type I error rates when simulating from the single-cell PME 113 

model (Figure 1A), except for pseudobulk jaxQTL-Poisson which displayed increased false positives 114 

likely due to its over-conservative standard errors. We observed largely similar conclusions for jaxQTL 115 

when varying heritability, random intercept variance 𝜎2
𝑢 (modeling similarity of cell read counts within 116 

the same person; see Methods), sample size, and minor allele frequency (MAF) parameters (Figures 117 

S5-S8). Importantly, jaxQTL-negbinom and linear models remain calibrated across cell type abundances 118 

and sample sizes, unlike SAIGE-QTL which exhibited increased false positives in rarer cell types when 119 

sample sizes are small (N < 200; Figure S7). SAIGE-QTL and jaxQTL-negbinom had slight inflation when 120 

𝜎2
𝑢 ≈ 1, however this scenario is unlikely to occur in practice (Figure S3).  121 

Next, we observed that jaxQTL-negbinom had improved power compared with jaxQTL-linear and 122 

tensorQTL, especially for lower coverage genes. Across three cell types, genes with higher coverage 123 

exhibited greater statistical power to identify their sc-eQTLs. Specifically, for large cell type proportions, 124 

jaxQTL-negbinom outperformed jaxQTL-linear for genes with >95% coverage (P = 7.53 x 10-4). For 125 

medium and rare cell types, jaxQTL-negbinom exhibited greater power over jaxQTL-linear down to ~70% 126 

coverage (P = 2.02 x 10-4 and 3.91 x 10-27 respectively), highlighting the benefit of count-based models 127 

for lower expressed genes and rarer cell types. While both jaxQTL-linear and tensorQTL fit linear models 128 

of gene expression, differences in power can be explained by jaxQTL score test versus tensorQTL Wald 129 

test. We obtained similar conclusions when varying heritability, random intercept variance 𝜎2
𝑢, sample 130 

size, and MAF parameters (Figures S5-S8).  131 

After assessing model performances under the PME model with non-zero random intercept 132 

variance 𝜎2
𝑢, we repeated our analyses by sampling read counts from PME models with 𝜎2

𝑢= 0, which 133 

reflects a standard Poisson model (Figure S9). As expected, the performance of jaxQTL-negbinom and 134 

SAIGE-QTL closely resembled jaxQTL-Poisson (see Supplemental Note). Again, count-based models 135 

outperformed jaxQTL-linear and tensorQTL, notably for genes in rarer cell types. All models were well-136 

calibrated under the null.  137 

Altogether, jaxQTL-negbinom provides a calibrated and powerful pseudobulk model for single-138 

cell data that performs comparably to the PME model of SAIGE-QTL. Our empirical results can be in part 139 

explained by the structural similarity of the variance under negative binomial and PME models of 140 

pseudobulk (see Supplemental Note). 141 

jaxQTL improves power for eGene discovery in the OneK1K dataset 142 

To benchmark jaxQTL in identifying eGenes on real datasets, we applied jaxQTL on single-cell data of 143 

14 PBMC cell types from N = 982 individuals in OneK1K 19. We defined eGene as genes with at least 144 

one sc-eQTL in a cell type, i.e., gene-cell-type pairs. Before comparing different sc-eQTL models, we 145 

investigated the calibration of gene-level P values obtained by the Beta-approximation approach that 146 

permutes the gene expressions observed in OneK1K data. Across the three representative cell types, 147 

we found that gene-level P values from jaxQTL-linear and jaxQTL-negbinom were well-calibrated (Figure 148 

S10), however gene-level P values for jaxQTL-Poisson were inflated due to overcorrection by the 149 

permutation method on its variant P values. 150 

After confirming the gene-level P values were calibrated, we compared the statistical power in 151 

identifying eGenes across different models using jaxQTL (Figure 2A; Table S3). Across 14 cell types, 152 



 

jaxQTL-negbinom identified 14% more eGenes compared with jaxQTL-linear (18,907 vs. 16,654 eGenes, 153 

P = 1 x 10-35), and 21% more compared with jaxQTL-Poisson (15,634 eGenes, P = 5 x 10-75). The number 154 

of eGenes found per cell type was highly correlated with cell type proportions, which reflects differential 155 

statistical power (Pearson 𝜌 = 0.97; Figure S11). Focusing on jaxQTL-negbinom and jaxQTL-linear, we 156 

found the negbinom model provided higher 𝜒2 test statistics for lead SNP-eGene pairs across cell types 157 

(median 𝜒2 = 43.60 vs. 38.46, P = 3 x 10-24; Figure S12). eGenes identified between models show 158 

substantial overlap (Figure S13A). Consistent with simulation results, eGenes identified exclusively by 159 

jaxQTL-negbinom had lower coverage (median 79% vs. 94%, P = 2 x 10-115; Figure S13B) than eGenes 160 

also identified with jaxQTL-linear, confirming that the negbinom model is more powerful for genes with 161 

lower expression. The reduced power of the jaxQTL-Poisson was caused by the penalty on its inflated 162 

type I error when computing the gene-level P values using the permutation approach. Given the 163 

improvement of the negbinom model over Poisson and linear models, to simplify our presentation we 164 

refer to jaxQTL-negbinom as jaxQTL for the remainder of the manuscript. 165 

We next compared jaxQTL performance against tensorQTL 29 (a commonly used software for 166 

bulk-eQTL mapping using a linear model) and SAIGE-QTL 36 (a recent software for sc-eQTL mapping 167 

using a Poisson mixed-effect model) (Figure 2B; Table S4). Across 14 cell types, jaxQTL identified 16% 168 

more eGenes compared with tensorQTL (P = 2 x 10-47) and 11% more eGenes compared with SAIGE-169 

QTL (P = 3 x 10-24), thus demonstrating jaxQTL increased power to identify eGenes in both rare and 170 

common cell types. The advantage of jaxQTL over SAIGE-QTL can be partially explained by gene-level 171 

calibration methods (permutation vs. ACAT-V), as performance gap decreased when applying ACAT-V 172 

in jaxQTL (5% more eGenes; Figure 2B). We note that our tensorQTL results identified more eGenes 173 

than tensorQTL in ref. 36, likely due to different procedures to create pseudobulk data (see Methods). 174 

Finally, we confirmed that jaxQTL-linear results agreed with our tensorQTL results since the Wald test 175 

and score test are asymptotically equivalent (97% overlap; Figure S14), with differences up to gene-level 176 

P value obtained by the permutation approach. 177 

Next, we evaluated the computational performance of jaxQTL in cis-eQTL mapping compared 178 

with existing approaches using 50 randomly selected genes from chromosome 1 in OneK1K (see 179 

Methods; Figure S15). The average run time of jaxQTL on GPU/TPU across 3 cell types is 3.7x faster 180 

compared with SAIGE-QTL (12 vs. 44 mins) and 9.2x slower compared with tensorQTL (1.3 mins). To 181 

demonstrate the impact of sample size on run time, we simulated data for varying sample size by 182 

downsampling from N=100 to 700. The average run time is 39 mins for SAIGE-QTL, 15 mins for jaxQTL 183 

on GPU/TPU, and 2 mins for tensorQTL. To mimic TenK10K data21, we performed upsampling to 184 

simulate data for N=10,000 (see Methods). Focusing on a dominant cell type such as CD4NC cells, 185 

jaxQTL on GPU was at least 1,560x faster (30 mins) compared with SAIGE-QTL, highlighting the 186 

efficiency of jaxQTL when applied to ever-increasing population-scale single-cell data. We note that the 187 

runtime of jaxQTL is dominated by performing permutations. Importantly, when performing ACAT-V to 188 

compute gene-level P values on CPU, jaxQTL was 1.3 - 10,596x times faster than SAIGE-QTL for N=100 189 

to 10,000, and comparable with the linear model of tensorQTL (with permutations). 190 

In summary, jaxQTL outperforms other models and methods in identifying eGenes in OneK1K, 191 

highlighting that pseudobulk-approaches for scRNA-seq are powerful (even for rarer cell types) when 192 

appropriately modeling count data. In addition, we observed that its computation time can scale to 193 

scRNA-seq datasets with thousands of individuals approaching that of classical linear models. 194 



 

jaxQTL results replicate across datasets and ancestries 195 

To verify that increased eGene detection from jaxQTL is not driven by false positives, we first replicated 196 

our sc-eQTLs results in 88 European- and 88 Asian-ancestry individuals from CLUES PBMC scRNA-seq 197 

study (Figure 3; Figure S16, S17; Table S5)47. Of the lead SNP-eGene pairs found in matched CLUES 198 

cell types, 40-86% can be replicated in a European cohort and 23-74% in an Asian cohort at FDR < 0.05 199 

with concordant directional effect. Additionally, we replicated 75-92% sc-eQTLs in EUR whole blood 200 

samples from GTEx (N=588)10 and 50%-78% in FACS-sorted immune cell types from DICE study 201 

(N=91)48 (Figure S18; Table S6). We also observed consistent direction of sc-eQTL effects when 202 

comparing with shared lead SNP-eGene results in original OneK1K results (Figure S19). Lastly, we 203 

recapitulated the depletion of selection constraint and short enhancer domains in eGenes 10,49,50 (Figure 204 

S20; see Web resources). Consistent with refs. 49,51–53, we observed genes depleted of loss-of-function 205 

mutations (pLI > 0.9) had smaller sc-eQTL effect sizes (Figure S21), and that the effect size of lead 206 

SNPs of eGenes was smaller at lower allele frequency (Figure S22), confirming selection constraints on 207 

gene expressions in immune cell types. Altogether, these results demonstrate that jaxQTL results 208 

replicate across datasets and recapitulate known findings from bulk-eQTL studies. 209 

sc-eQTLs are more enriched in cell-type-matched CREs than bulk-210 

eQTLs 211 

To characterize sc-eQTLs and their potential downstream role in human diseases, we performed fine-212 

mapping for eGenes identified by jaxQTL on OneK1K using the SuSiE summary statistics approach 54. 213 

Briefly, SuSiE performs Bayesian variable selection to identify likely causal SNPs in the form of credible 214 

sets and provide posterior inclusion probabilities (PIPs) to quantify uncertainty in its selection (see 215 

Methods). After restricting to the 18,281 non-MHC and non-MAPT eGenes identified by jaxQTL, SuSiE 216 

reported 95% credible sets (CS) for 12,978 eGenes across 14 cell types (6,776 unique eGenes). The 217 

average number of CSs per eGene was 1.15 with a median size of 16 SNPs, with 88% of eGenes 218 

explained by a single causal variant. We observed that the average number of CSs tracked with cell type 219 

proportion (P = 1.49 x 10-5; Figure S23), suggesting the fine-mapping results were likely biased by lower 220 

statistical power to pinpoint independent causal eQTLs in rarer cell types. To establish a baseline, we 221 

also performed cis-eQTL and fine-mapping analyses using “bulk” gene expression (i.e., summed over 222 

cell types). As expected, we found that sc-eQTLs successfully identified a CS for more unique eGenes 223 

than bulk-eQTLs (6,776 vs 6,338, P = 9.5 x 10-23).  224 

To characterize the functional architecture of fine-mapped sc-eQTLs, we performed enrichment 225 

analysis using cell-type-agnostic annotations from S-LDSC baseline model55 (see Methods). Consistent 226 

with bulk-eQTLs 56, fine-mapped sc-eQTLs (PIP ≥ 0.5) across cell types were highly enriched in promoter-227 

like regions, enhancers, and evolutionarily conserved regions (Figure 4A). Overall, we observed greater 228 

enrichments for these annotations when using sc-eQTLs compared with bulk-eQTLs, however these 229 

differences were not significant, likely resulting from baseline annotations not reflecting cell-type-230 

specificity. Additionally, we observed fine-mapped sc-eQTLs were less likely to be near promoter regions 231 

(P = 6.71 x 10-4) and more distal (P = 1.07 x 10-4) when compared with bulk-eQTLs (Figure 4B), 232 

suggesting that single-cell eQTL mapping can better prioritize distal regulatory elements.  233 



 

Next, we sought to compare the enrichment of cell-type-specific candidate cis-regulatory 234 

elements (cCREs), derived using single-cell omics or isolated cell types, between fine-mapped sc-eQTLs 235 

and bulk-eQTLs. First, we confirmed that sc-eQTLs were enriched in cell-type-matched cCREs reflecting 236 

open chromatin, enhancers, and promoters (Figure 4C; Methods). We observed that sc-eQTLs were 237 

highly enriched in enhancer-gene links in matched cell types. Importantly, sc-eQTLs were more enriched 238 

in cell-type matched open chromatin (P = 6.77 x 10-9), enhancers (P = 3.40 x 10-10) and promoters (P = 239 

1.26 x 10-6) compared with bulk-eQTLs after meta-analysis across cell types (Figure 4C). Lastly, we 240 

further confirmed the accuracy of sc-eQTLs linked to their target genes by observing stronger enrichment 241 

in cell-type-matched enhancer-gene links identified by SCENT 57 compared to bulk-eQTLs (P = 3.38 x 242 

10-4; Figure S24), highlighting the necessity of conducting eQTL mapping using single-cell data to 243 

capture signals masked by bulk approach. 244 

In summary, our analyses suggest that sc-eQTLs are enriched for distal cell-type-specific CREs 245 

that are likely missed by bulk-eQTL approach. 246 

sc-eQTL location predicts cell-type specificity 247 

Understanding how sc-eQTLs are shared across cell types is challenging due to differential statistical 248 

power between cell types. Specifically, simply counting sc-eQTLs based on their significance or fine-249 

mapping results would conclude to a high cell-type specificity of sc-eQTLs (Figure S25; results similar to 250 

the ones reported by ref. 19), but ignores the pervasive correlation of eQTL effects between cell types 251 

(Figure S26; as observed using eQTLs from bulk cell type samples in ref. 37). To mitigate this, we 252 

analyzed fine-mapped sc-eQTLs using mashr, which provides posterior effect estimates and significance 253 

of effect after accounting for the effect size correlation between cell types and residual correlation due to 254 

sample overlap 58 (2,012 sc-eQTLs with PIP ≥ 0.5 and significant at a local false sign rate (LFSR) < 0.05 255 

in at least one cell type). 256 

Using the mashr estimated effect sizes, we found that 67% of fine-mapped sc-eQTLs were shared 257 

by sign across all 14 cell types (Figure 5A), suggesting their directional effect on gene expression was 258 

consistent. In contrast, eQTL effect size magnitudes were less shared due to effect size heterogeneity, 259 

with 15% universally shared and 9% specific (Figure 5A), consistent with previous findings 10,58,59. Cell-260 

type-specific sc-eQTLs were most common in monocytes, reflecting their difference from lymphocytes 261 

such as B cells and T cells (Figure S27).  262 

We found cell-type-specific sc-eQTLs identified were more distal from TSS compared with shared 263 

sc-eQTLs (mean 102,164 vs. 53,733 bp, P = 2.17 x 10-6; Figure 5B), consistent with previous work 264 

showing that distal CREs were more likely to be cell-type-specific 60,61. Lastly, we calculated the pairwise 265 

sharing of sc-eQTL by magnitude and found cell type sharing outside expected subtype groups (Figure 266 

S28). For example, we found 84% shared sc-eQTLs between effector memory CD8+ T cells and natural 267 

killer (NK) cells, suggesting their shared cytotoxic effector mechanisms between adaptive and innate 268 

immunity 62.  269 

To validate the specificity of cell-type-specific sc-eQTLs identified by mashr (in comparison with 270 

a baseline simple counting approach), we first calculated the replication rate and observed that cell-type-271 

specific eQTLs after mashr analysis were less replicated in eQTLGen (0.60 vs. 0.77, P = 3.11 x 10-7) and 272 

GTEx (0.33 vs. 0.47, P = 5.19 x 10-4) respectively, consistent with the expectation that sc-eQTL effects 273 



 

private to a single cell type were likely masked by the bulk-eQTL study. Second, we found the cell-type-274 

specific sc-eQTLs identified by mashr were more distal from TSS compared to the simple counting 275 

approach (mean 102,164 vs. 63,873 bp, P = 9.56 x 10-4), suggesting mashr was more powerful in 276 

identifying distal cell-type-specific sc-eQTLs. Finally, we identified scATAC-seq peaks exclusive to each 277 

cell type and calculated the enrichment of cell-type-specific open chromatins. We observed the specific 278 

eQTLs identified by mashr were more enriched in cell-type-specific open chromatin in rarer cell types 279 

(Figure S29), such as non-classical monocytes (MonoNC), NK recruiting (NKR) cells, CD4+ T cells 280 

expressing SOX4 (CD4SOX4), and Plasma, which reflected eQTL sharing results (Figure S27).  281 

In summary, our analyses suggest that the genetic effect of sc-eQTLs are largely shared across 282 

cell types. sc-eQTLs closer to TSS are more likely to be shared while distal sc-eQTLs are likely cell-type-283 

specific due to the different regulatory elements involved in transcription. 284 

sc-eQTLs reveal cell types associated with GWAS immune traits 285 

After observing that sc-eQTLs improved our ability to identify cell-type-specific eQTLs, we next 286 

investigated whether sc-eQTLs can improve the interpretation of GWAS findings, which SNP-heritability 287 

(h2) tend to be concentrated in SNPs within cCREs 55,63,64 and genes active in disease-relevant cell types 288 
65–67. To quantify the extent to which sc-eQTLs can characterize GWAS findings, we first evaluated the 289 

fraction of h2 explained by SNP-annotations constructed from fine-mapped sc-eQTLs in all PBMC cell 290 

types and meta-analyzed S-LDSC results across 16 immune diseases and blood traits (Table S7). We 291 

found that the union of fine-mapped sc-eQTLs across 14 cell types (3.5% of common SNPs) were 292 

enriched in h2 (2.82 ± 0.25), and explained 9.90 ± 0.88% of h2. Importantly, fine-mapped sc-eQTLs 293 

explained more h2 than bulk-eQTLs (6.10 ± 0.76%; Figure 6A) while maintaining comparable h2 294 

enrichment (2.76 ± 0.34; Figure S30), suggesting that sc-eQTLs increase the number of GWAS variants 295 

that can be functionally characterized.  296 

We further investigated whether h2 was enriched within sc-eQTLs from disease-relevant cell types 297 

(Figure 6B). We ran S-LDSC on sc-eQTL annotations built from each cell type, and individually looked 298 

at their effects while conditioning on the union of fine-mapped sc-eQTLs. Overall, identified cell types 299 

were consistent with known biology and previous studies leveraging cCREs and genes differentially 300 

expressed. For example, we identified monocyte cell types for monocyte percentage (min P = 1.80 x 10-301 
3 for MonoNC) and major sub-cell-types of B cells and T cells for lymphocyte percentage (min P = 4.26 x 302 

10-4 for CD4NC). For immune diseases, we identified various T cell subtypes for celiac disease 66 (min P 303 

= 7.65 x 10-3 for CD4NC), inflammatory bowel disease 66 (min P = 1.34 x 10-4 for naïve and central memory 304 

CD8+ T cells (CD8NC)), hypothyroidism 67 (min P = 9.91 x 10-3 for CD8ET), primary biliary cirrhosis 66 (min 305 

P = 3.45 x 10-2 for CD8NC), and rheumatoid arthritis 66,68 (min P = 3.43 x 10-3 for CD8ET), as well as the 306 

role of NK cells for eczema 69(min P = 1.12 x 10-2 for NK).  307 

Altogether, these results highlight that sc-eQTLs can improve our ability to characterize GWAS 308 

findings by identifying new eQTLs in disease relevant cell types.  309 



 

sc-eQTLs prioritize candidate genes missed by bulk-eQTLs 310 

To demonstrate that sc-eQTLs can prioritize GWAS candidate genes that would have been missed by 311 

bulk sequencing, we present OneK1K sc-eQTLs and bulk-eQTLs results at a leading genetic risk loci 312 

associated with rheumatoid arthritis (RA) 70 in ANKRD55-IL6ST region 71,72 (Figure 7). We identified the 313 

GWAS leading SNP rs7731626 (chr5:55444683:G>A) as the top candidate causal sc-eQTLs for IL6ST 314 

in CD4NC (PIP = 1) and CD8NC T cells (PIP = 0.98), and observed significant colocalization with RA for 315 

these two cell types (PP.H4 = 1, and PP.H4 = 0.99, respectively). In contrast, this SNP became null in 316 

bulk-eQTL results as its eQTL effect on IL6ST was diluted when cell types were lumped together. We 317 

further confirmed that rs7731626 is likely to be within an enhancer acting on IL6ST regulation in T cells 318 

by observing contact between rs7731626 and IL6ST promoter exclusively in T cells using promoter 319 

capture Hi-C (PCHi-C) experimental data 73, as well as H3K27ac peaks (capturing enhancer activity) at 320 

this locus in naive CD4+ and CD8+ T cells 74,75 (Figure 7; see Code and Data Availability); the link 321 

between rs7731626 and IL6ST in T cells has also been established by other single-cell multi-omic data 322 

approaches 34,76–78. We replicated the rs7731626-IL6ST association in CD4+ and CD8+ T cells in CLUES 323 

European- and Asian-ancestry individuals (N=88, p=0.03 respectively), except rs7731626 in CD8+ T cells 324 

among Europeans (p=0.3), likely due to lower sample size for detecting weaker effect as evidenced by 325 

consistent effect direction. Besides, we also identified rs7731626 as both a bulk-eQTL and sc-eQTL for 326 

ANKRD55 and similar colocalization with RA (Figure S31), illustrating that while bulk-eQTL approaches 327 

can identify strong sc-eQTL signal, they can nominate an incomplete list of candidate genes. 328 

Additional colocalization results between RA GWAS and OneK1K sc-eQTLs are presented in 329 

Figure S32. We identified 43 eGene colocalizing with RA (PP.H4 > 0.9), primarily in T and B cells 330 

(consistent with literature 79). We notably found that EOMES eQTLs colocalized with RA in CD8+ T cells 331 

(PP.H4 = 0.97), consistent with the role of EOMES as a key TF for mediating immunity function in effector 332 

CD8+ T cells80. Similarly, CD40 eQTLs colocalized with RA in Plasma cells, reflecting that CD40 signaling 333 

pathway plays an essential role in immune response in B cells 81,82.  334 

Altogether, these results illustrate that sc-eQTL analysis can reveal new candidate genes for 335 

diseases that are masked by bulk approach. 336 

Discussion 337 

We developed jaxQTL, an efficient and powerful approach for large-scale eQTL mapping on single-cell 338 

data using count-based models. Through simulation and real data analyses, we showed that the negative 339 

binomial model was the most powerful and well-calibrated model compared with the linear and Poisson 340 

models. In an application to OneK1K, we found that jaxQTL was more powerful in identifying eGenes 341 

compared to tensorQTL (linear model) and SAIGE-QTL (Poisson mixed model) while exhibiting 342 

comparable or better runtimes when performed using GPUs/TPUs.  343 

We further leveraged jaxQTL results to characterize eGenes and their corresponding fine-mapped 344 

sc-eQTLs. First, we found that eGenes are depleted of loss-of-functions variants and large-effect eQTLs, 345 

consistent with previous works on bulk-eQTLs 49,51–53. Second, we showed that sc-eQTLs are more distal 346 

to TSS and more enriched in cell-type matched CREs compared with bulk-eQTLs, and that sc-eQTLs 347 

effects are largely consistent across cell types (as observed using eQTLs from bulk cell type samples in 348 



 

ref.37), with cell-type-specificity increasing with distance to TSS. These results summarize that while bulk-349 

eQTLs identify primarily proximal regulatory effects with low cell-type-specificity (e.g., promoter), sc-350 

eQTLs allow to identify additional distal regulatory effects with medium to high cell-type-specificity (e.g., 351 

enhancer). Finally, we demonstrated that sc-eQTLs explain more heritability than bulk-eQTLs for GWAS 352 

traits, suggesting that the GWAS risk variants were partially driven by eQTLs with medium to high cell-353 

type-specificity. We used an example of ANKRD55-IL6ST loci to demonstrate that sc-eQTLs can 354 

prioritize RA-associated gene IL6ST missed by bulk approach. This candidate gene is well-documented 355 

for its functional role on the key therapeutic target cytokine IL6 83–85, and is further supported by other 356 

genetic evidence such as its higher PoPs prioritization scores 86 compared with the closest gene 357 

ANKRD55 (top 1% vs 13% percentile respectively). 358 

jaxQTL has several advantages compared to existing sc-eQTL methods. First, jaxQTL requires 359 

no data transformation on gene expression outcomes such that it provides an eQTL effect estimate on 360 

the interpretable count data scale. Second, we showed through simulations that jaxQTL outperformed 361 

the linear model (used by tensorQTL) in identifying eQTLs, especially for lower expressed genes and 362 

rare cell types. This will be well suited for rare cell types and precise cell states in short-read scRNA-seq 363 

and low counts of isoforms transcripts in long-read scRNA-seq. Lastly, jaxQTL leverages GPU/TPU to 364 

maximize efficiency in sc-eQTL mapping at population scale (N>100) while performing the permutations 365 

requested in eQTL best practices 28. Although SAIGE-QTL similarly used a count-based model without 366 

permutation calibration, jaxQTL on GPU/TPU was on average 3.7x faster than SAIGE-QTL with sample 367 

size observed (N=982) in OneK1K and 1,560x faster in simulated data for dominant cell type with sample 368 

size N=10,000 (mimicking the upcoming TenK10K data). Importantly, when performing ACAT-V to 369 

compute gene-level P values, jaxQTL was 1.3 - 10,596x times faster than SAIGE-QTL for N=100 to 370 

10,000, and displayed times comparable with the linear model of tensorQTL (with permutations).  371 

Our findings have several implications for further single-cell sequencing studies and their 372 

integration with GWAS. First, we demonstrated the benefits of the negative binomial model over the 373 

Poisson mixed model for sc-eQTLs mapping. jaxQTL can be applied to other count data such as peak 374 

reads from scATAC-seq, or extend to accommodate other molecular outcomes such as isoform ratios, 375 

while efficiently accounting for the larger number of tests to perform in these datasets (e.g. ~300K of 376 

ATAC-seq peaks in scATAC-seq 87 vs. ~20K genes in scRNA-seq). We thus recommend considering 377 

jaxQTL with the negative binomial models for further analyses of population-scaled scATAC-seq and/or 378 

multiome datasets to identify chromatin activity QTLs. Second, jaxQTL is scalable for identifying sc-379 

eQTLs in extremely large scRNA-seq datasets. As advances in the ability to multiplex samples in single-380 

cell sequencing assays is allowing generating scRNA-seq and multiome datasets in hundreds to 381 

thousands of samples, we expect jaxQTL to be leveraged for analyzing datasets beyond OneK1K and 382 

TenK10K. Third, we highlighted that sc-eQTL effects are more shared across cell types than previously 383 

reported 19. This property might motivate new sc-eQTL mapping and fine-mapping methods jointly 384 

integrating all cell types to increase power. Finally, we observed that while OneK1K sc-eQTLs explained 385 

a higher proportion of heritability than bulk-eQTLs for GWAS of immune traits, they did not close the 386 

missing link between GWAS and eQTLs. While generation of larger scRNA-seq datasets will improve the 387 

detection of distal sc-eQTLs with high cell-type-specificity, closing this gap might involve identifying sc-388 

eQTLs with trans-effects, generating scRNA-seq data from disease-relevant contexts (such as 389 

stimulating condition 88 and developmental stage89), or generating other types of single-cell QTLs (such 390 



 

as splice QTLs90, chromatin activity QTLs87 and methylation-QTL 91). In all those scenarios, jaxQTL can 391 

be easily extended to efficiently analyze those datasets.  392 

We note several limitations of our work. First, jaxQTL power is dependent on cell type abundance, 393 

which will limit sc-eQTL power for rare cell types and precise cell states. Despite this, jaxQTL identified 394 

more eGenes within rare cell types than existing methods. Second, pseudobulk approaches aggregate 395 

read counts over discrete cell types, which may fail to capture dynamic contexts, thus limiting the 396 

identification of dynamic sc-eQTLs34,35 (i.e. variants impacting gene expression within a cell type whose 397 

effects vary dynamically along a continuous state). Identifying dynamic sc-eQTLs with jaxQTL could be 398 

performed by identifying sc-eQTLs in more precise cell states, but further work would be required to 399 

evaluate this approach. Third, our analyses were restricted to PBMCs and immune-related diseases, and 400 

it is unclear if our conclusions translate to sc-eQTLs from different tissues and disease types. However, 401 

ongoing release of sc-RNAseq data from brain samples will allow characterizing brain sc-eQTLs and their 402 

role in psychiatric traits20. Fourth, our analyses were also restricted to European individuals. Assessing 403 

the transportability of our conclusions in non-European populations is a critical future research direction, 404 

as different environments and genetic backgrounds impact gene regulation and disease effect sizes 92. 405 

While the recent release of a population-scaled scRNA-seq from East-Asian individuals will allow 406 

identifying sc-eQTLs and characterizing their role in East-Asian populations90, there is a need to generate 407 

datasets in more diverse populations. Despite these limitations, jaxQTL provides an efficient and flexible 408 

framework for eQTL mapping on single-cell data using a count-based model. Our findings enable rich 409 

biological and mechanistic interpretation for disease risk loci at the cell-type level and nominate 410 

therapeutic targets for complex diseases.  411 
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Web Resources 429 

JAX: https://github.com/google/jax 430 

tensorQTL: https://github.com/broadinstitute/tensorQTL 431 

SAIGE-QTL: https://github.com/weizhou0/qtl 432 

bedtools: https://bedtools.readthedocs.io/en/latest/ 433 

qvalue R package: https://github.com/StoreyLab/qvalue 434 

susieR package: https://github.com/stephenslab/susieR 435 

GTEx pipeline: https://github.com/broadinstitute/gtex-pipeline/tree/master 436 

SLDSC software: https://github.com/bulik/ldsc 437 

1000 Genome annotations: https://alkesgroup.broadinstitute.org/LDSCORE/ 438 

PLINK software: https://www.cog-genomics.org/plink/2.0/ 439 

mashr: https://stephenslab.github.io/mashr/index.html 440 

 441 

GTEx v8 eQTL summary statistics (EUR): https://gtexportal.org/home/downloads/adult-gtex/qtl 442 

DICE cis-eQTL summary statistics: https://dice-database.org/ 443 

eQTL catalogue: https://www.ebi.ac.uk/eqtl/ 444 

CLUES data: Gene expression data are available in the Human Cell Atlas Data Coordination Platform 445 

(https://explore.data.humancellatlas.org/projects/9fc0064b-84ce-40a5-a768-e6eb3d364ee0/project-446 
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matrices) and at GEO accession number GSE174188. Genotypes are available at dbGap accession 447 

number phs002812.v1.p1 448 

 449 

GTEx v8 SuSiE fine-mapping results: https://www.finucanelab.org/data 450 

Gene GTF file (release 84):  451 

https://ftp.ensembl.org/pub/grch37/release-84/gtf/homo_sapiens/Homo_sapiens.GRCh37.82.gtf.gz 452 

pLI and LOEUF score from gnomad:  453 

https://storage.googleapis.com/gcp-public-data--454 

gnomad/release/4.0/constraint/gnomad.v4.0.constraint_metrics.tsv 455 

Data and Code Availability  456 

Single-cell eQTL summary statistics results produced by jaxQTL and fine-mapping results are available 457 

on Zenodo:10.5281/zenodo.14624945 458 

 459 

jaxQTL software: https://github.com/mancusolab/jaxQTL 460 

jaxQTL analysis code: https://github.com/mancusolab/jaxqtl_analysis 461 

Original Onek1k data are available at: 462 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM5901755 463 

 464 

We downloaded the call sets from the ENCODE portal (https://www.encodeproject.org/) with the following 465 

identifiers: ENCFF313TWH (CD4 T cell), ENCFF635YOQ (CD8 T cell), ENCFF071MEQ (B cell), 466 

ENCFF814VKT (NK cell), and ENCFF468QFA (Monocyte).467 

https://explore.data.humancellatlas.org/projects/9fc0064b-84ce-40a5-a768-e6eb3d364ee0/project-matrices
https://www.finucanelab.org/data
https://ftp.ensembl.org/pub/grch37/release-84/gtf/homo_sapiens/Homo_sapiens.GRCh37.82.gtf.gz
https://storage.googleapis.com/gcp-public-data--gnomad/release/4.0/constraint/gnomad.v4.0.constraint_metrics.tsv
https://storage.googleapis.com/gcp-public-data--gnomad/release/4.0/constraint/gnomad.v4.0.constraint_metrics.tsv
https://github.com/mancusolab/jaxqtl
https://github.com/mancusolab/jaxqtl_analysis
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM5901755


 

Online Methods 468 

GLM and count-based eQTL models 469 

Here, we describe the core generalized linear model (GLM) for a focal gene within a focal cell type 𝑐, 470 

assuming that cell type labels for each cell have been provided. Specifically, jaxQTL models the 471 

conditional expectation of pseudobulk counts 𝑦𝑐 (i.e. sum of read counts across cells within the cell type), 472 

given covariates 𝑋 (e.g., age, sex, genotyping principal components) and a cis-genetic variant 𝑔, as 473 

𝐸[𝑦𝑐 | 𝑋, 𝑔]  =  ℎ(𝑋𝛽 + 𝑔𝛽𝑔 +  𝑙𝑐), 474 

where 𝛽 are the covariate effects, 𝛽𝑔 is the allelic effect, 𝑙𝑐 is an offset adjusting for differences in library 475 

size, and ℎ(⋅) is a function which maps linear predictions to expected values. Additionally, jaxQTL models 476 

the conditional variance as, 477 

𝑉𝑎𝑟[𝑦𝑐 | 𝑋, 𝑔]  = 𝑉𝑎𝑟𝛼(ℎ(𝑋𝛽 + 𝑔𝛽𝑔 + 𝑙𝑐)), 478 

where 𝑉𝑎𝑟𝛼(⋅) corresponds to a variance function determined by the specified likelihood (e.g., Poisson, 479 

negative binomial) allowing for an overdispersion parameter 𝛼 if required (e.g., negative binomial) 45,93.  480 

We fit a null GLM using iteratively reweighted least squares (IRWLS). Namely, assuming there is 481 

no genotype effect (i.e. 𝛽𝑔 = 0), the update step for covariate effects 𝛽 at the 𝑡 + 1 iteration can be 482 

computed by solving a linear system given by, 483 

𝑋𝑇𝑊𝑡𝑋 𝛽𝑡+1 = 𝑋𝑇𝑊𝑡(𝑒𝑡  + 𝑋𝛽𝑡) , 484 

where 𝑒𝑡 ∝ (𝑦 − 𝜇𝑡) are the “working residuals”, 𝜇𝑡 = ℎ(𝑋𝛽𝑡  +  𝑙𝑐), and 𝑊𝑡 are the GLM weights 485 

proportional to the reciprocal of the conditional variance. To solve this linear system, jaxQTL allows for 486 

different solvers (e.g., QR, Cholesky, and conjugate gradient), however in practice we found Cholesky to 487 

outperform other approaches.  488 

While both the Wald test and score test are implemented in the software, jaxQTL employs the 489 

score test in assessing the nonzero cis-SNP effect 𝛽𝑔 on 𝑦𝑐 for its improved computational efficiency94. 490 

Specifically, we first fit the null GLM model described above. Next, jaxQTL uses a block matrix approach 491 

to efficiently compute score test statistics for all 𝑝 cis-SNPs in a focal gene. Let 𝑑 = 𝑑𝑖𝑎𝑔(�̂� 𝑇  𝑊 𝐺)̂ be a 492 

length 𝑝 vector, then the vector of test statistics 𝑍 is given by, 493 

𝑍 = (�̂� 𝑇𝑊 𝑒) ⊘ 𝑑1/2 , 494 

where �̂� is the weighted residualized genotype obtained by �̂� = 𝐺 − 𝑋(𝑋𝑇𝑊𝑋)−1𝑋𝑇𝑊𝐺, 𝑑1/2 is the 495 

element-wise square-root, and ⊘ is element-wise division. 496 

To adjust for multiple testing corrections in eGene discovery, jaxQTL provides gene-level P values 497 

calibrated by a permutation-based Beta-approximation approach, which is similarly implemented in 498 

FastQTL and tensorQTL software 28,29. To infer beta distribution parameters, we applied natural gradient 499 

descent using second order approximation to ensure parameters stay on the manifold (i.e. > 0)95. Lastly, 500 

we controlled the false discovery rate (FDR) and identified eGenes using these gene-level P values. 501 



 

We implemented jaxQTL in Python to enable just-in-time (JIT) compilation through the JAX 502 

package (Web Resources), which generates and compiles heavily optimized C++ code in real-time and 503 

operates seamlessly on CPU, GPU, or TPU (Code Availability). 504 

Analysis of OneK1K single-cell data 505 

We obtained 1,267,768 PBMC blood cells for 14 cell types from N = 982 healthy individuals of European 506 

ancestry in the OneK1K cohort19. Each donor has an average of 1,291 cells (range 62-3,501). Each cell 507 

type has a varying number of donors due to sampling variance (Table S2). For sc-eQTL mapping, we 508 

created pseudobulk count data for each of the pre-annotated 14 cell types. After retaining genes with 509 

sample-coverage (i.e., fraction of non-zero expression read counts) in at least 1% of the population for 510 

each cell type, we performed sc-eQTL mapping for an average of 16,096 genes per cell type (Table S2). 511 

To establish a baseline for comparison, we created “bulk” data by summing all read counts across cell 512 

types for every gene and identified bulk-eQTLs using jaxQTL. 513 

We first aimed to benchmark between different sc-eQTL models, including linear, negbinom, and 514 

Poisson. For negbinom and Poisson, we calculated individual library size in each cell type, i.e., the offset 515 

term in the model, by summing read counts across all genes per individual. For the linear model, we 516 

normalized gene expression read counts between individuals by TMM approach and then normalized 517 

across individuals by rank-based inverse normal transformation, as performed in GTEx 10. We 518 

implemented all three models using a score test in jaxQTL.  519 

For genotype data, we retained 5,313,813 SNPs with imputation INFO score >0.8, MAF>0.05, 520 

and Hardy Weinberg equilibrium (HWE) P>1e-6. Genotype PCs were calculated using 459,603 LD-521 

pruned SNPs with INFO>0.9, MAF>0.01, and HWE P>1e-6. Across all sc-eQTL models, we adjusted 522 

covariates including age, sex, first six genotype PCs, and two expression PCs computed in each cell 523 

type. We defined the cis-window size as ±500kb (total 1Mb) around TSS. We downloaded the gene 524 

annotation GTF file (Homo_sapiens.GRCh37.82) and collapsed it to a single transcript model using 525 

“collapse_annotation.py” from GTEx analysis pipeline (Web Resources)10. We controlled gene-level 526 

FDR at 0.05 per cell type using the qvalue method on gene-level P values through qvalue R package 527 

(Web Resources) 96. eGenes were identified by qvalue < 0.05. We used genome build hg19 for all 528 

variants and gene annotations. 529 

To benchmark with other existing software, we compared the eGenes results of jaxQTL against 530 

tensorQTL 29 and SAIGE-QTL 36. We first restricted genes to sample-coverage > 10% as in ref. 36 and 531 

obtained their SAIGE-QTL eGenes results 36. Then we applied FDR control on this subset of genes to 532 

call eGenes for jaxQTL-negbinom. Similarly, we performed sc-eQTL mapping using tensorQTL on this 533 

set of genes (Web Resources). We note that the tensorQTL results we report are different from 534 

tensorQTL results reported in ref. 36, as we sum pseudobulk counts (following GTEx recommended 535 

guidelines to transform counts from bulk RNA-seq 10) rather than averaging them. All reported P values 536 

are two-sided unless specified otherwise. 537 



 

Simulations 538 

To evaluate the performance of the jaxQTL-linear, jaxQTL-negbinom, jaxQTL-Poisson, tensorQTL 539 

(linear), and SAIGE-QTL (Poisson mixed effect) models, we first simulated read counts 𝑦𝑖𝑗 for individual 540 

𝑖 in cell 𝑗 for a focal gene under the Poisson mixed effect model, given by:  541 

𝑙𝑜𝑔(𝐸(𝑦𝑖𝑗| 𝑔𝑖 , 𝑢𝑖 , 𝑙𝑖𝑗))  = 𝛽0 + 𝑢𝑖 +  𝑔𝑖 βg + 𝑙𝑜𝑔(𝑙𝑖𝑗), 542 

where 𝛽0 is a baseline intercept, 𝑢𝑖 ∼ 𝑁(0, 𝜎2
𝑢) is the random intercept for individual 𝑖 that induces within-543 

sample correlation across cells, 𝑔𝑖  is genotype with effect-size 𝛽𝑔 ∼ 𝑁(0, ℎ2
𝑐𝑖𝑠) where ℎ2

𝑐𝑖𝑠 is cis-SNP 544 

heritability. To reflect the cell-wise and individual-wise read counts (i.e., library size 𝑙𝑖𝑗) observed in 545 

scRNA-seq data, we sampled 𝑙𝑖𝑗 from empirical values observed in OneK1K data. To fit pseudobulk 546 

linear, negbinom, and Poisson models, we created pseudobulk counts as 𝑦𝑖 = ∑ 𝑦𝑖𝑗𝑗  and library size as 547 

𝑙𝑖 = ∑ 𝑙𝑖𝑗𝑗 . We varied the baseline expression 𝛽0 , cis-SNP heritability ℎ2
𝑐𝑖𝑠, the random intercept variance 548 

𝜎2
𝑢 , MAF, and sample size N. Given fixed 𝛽0 values, we obtained varying sample-coverage across 549 

simulation replicates and calculated the average simulated sample-coverage (Figure 1; Figure S4-8).  550 

To evaluate the performance under model misspecification, we simulated single-cell read counts 551 

from the standard Poisson model assuming no within-individual correlation between cells, i.e., 𝜎2
𝑢 = 0. 552 

In each scenario, we performed a score test for association between simulated gene expression and 553 

genotype after fitting jaxQTL-linear, jaxQTL-Poisson, jaxQTL-negbinom, and SAIGE-QTL models. 554 

Different from the score test in jaxQTL-linear, tensorQTL reports Wald test statistics. For the linear models 555 

(jaxQTL-linear and tensorQTL), we normalized pseudobulk counts by rank-based inverse normal 556 

transformation 10,97. Each simulation had 500 replicates. 557 

Replication of sc-eQTLs 558 

To validate sc-eQTLs identified by jaxQTL-negbinom, we performed replication analysis using 559 

jaxQTL on two independent cohorts from CLUES study 47. We obtained scRNA-seq for N=256 individuals 560 

of European and Asian ancestry (see Web resources). We removed 50 control individuals from the 561 

ImmVar study, 2 outliers detected through a PCA analysis and 2 male individuals from the remaining 562 

based on ref 92. After intersecting with genotype data, we retained 88 European- and 88 Asian-ancestry 563 

individuals for replication analysis. Of these, 65 and 67 individuals were diagnosed with systemic lupus 564 

erythematosus (SLE) but were not in active state of disease flare. We matched 7 cell types in CLUES 565 

with 14 cell types in OneK1K. We performed analysis in European and Asian individuals separately. For 566 

lead SNP-eGene pairs identified by jaxQTL-negbinom, we fitted negbinom model using jaxQTL in CLUES 567 

cell types. We adjusted for age, sex, first six genotype PCs, SLE status, and batch numbers in sc-eQTL 568 

model. For each cell type, we reported the fraction of pairs replicated at FDR < 0.05 using qvalue R 569 

package96. To compare sc-eQTL effect size estimated by jaxQTL in CLUES and OneK1K samples 570 

adjusting for fitted count scale differences, we calculated an adjusted slope estimate as 𝛽 ∝ �̂� 𝑤 where 571 

𝑤 ≈ √2𝑝(1 − 𝑝) after accounting for weights in the GLM. Lastly, we compared results reported in the 572 

original OneK1K linear-model based analyses to demonstrate directional consistency in sc-eQTL effect 573 

estimates19. 574 



 

We further investigated the replication of lead SNP-Gene pairs in eQTLs identified by previous 575 

bulk-eQTL and sc-eQTL studies (see Web resources). For bulk-eQTL studies, we downloaded 1) cis-576 

eQTL results from European whole blood samples in GTEx v8 (N=588)10; 2) cis-eQTL summary statistics 577 

results from FACS-sorted PBMC immune cell types in DICE study (N=91) 48 . For sc-eQTL study, we 578 

downloaded cis-eQTL summary statistics from PBMC scRNA-seq data in CLUES study curated by eQTL 579 

catalogue (N=193) 47,98. All these prior results are based on the linear model approach when performing 580 

eQTL mapping. Again we reported the fraction of pairs replicated at FDR < 0.05 within each cell type.  581 

Computational runtime 582 

To evaluate the computational runtime of jaxQTL on cis-eQTL mapping in comparison with other 583 

software, we randomly selected 50 genes from chromosome 1 with sample-coverage > 1% in CD4NC, 584 

BIN, and Plasma cells observed in OneK1K. To benchmark the performance across different sc-eQTL 585 

sample sizes, we performed downsampling to create gene expressions for N=100, 300, 500, and 700 586 

individuals. Moreover, we performed upsampling for the expected TenK10K cohort21. Specifically, we 587 

sampled N=10,000 individuals using the single-cell data matrix. Assuming each individual has a total of 588 

5,000 cells as expected in TenK10K, we sampled the number of cells per person proportionally as 589 

observed for these three cell types. Then we created pseudobulk data for jaxQTL and tensorQTL. 590 

Fine-mapping on sc-eQTLs  591 

To identify causal eQTL for every eGene, we performed fine-mapping using SuSiE summary statistics 592 

approach for eGenes identified by sc-eQTL and bulk-eQTL approach (both jaxQTL-negbinom). We 593 

excluded eGenes in the MHC region (chr6: 25Mb-34Mb) with complex LD patterns and the MAPT region 594 

(chr17: q21.31) with complex inversion and duplication 99,100. For optimal statistical power, we first used 595 

jaxQTL-negbinom to compute all pairwise summary statistics for cis-SNPs in every eGene. We calculated 596 

the in-sample LD correlation matrix for cis-SNPs �̂� after projecting out the covariates effect under the 597 

GLM weights. Specifically for negbinom model results, we calculated a weighted residualized 𝐺 by �̂� =598 

𝐺 − 𝑋(𝑋𝑇𝑊𝑋)−1𝑋𝑇𝑊𝐺, followed by computing �̂� = 𝐷−1/2�̂�𝑇𝑊�̂�𝐷−1/2, where 𝐷 = 𝑑𝑖𝑎𝑔(�̂�𝑇𝑊�̂�) and 𝑊 is 599 

the individual weights calculated after fitting the null model. 600 

Enrichment analysis on sc-eQTLs  601 

We downloaded annotations from the LDSC baseline model and selected 12 annotations of promoter-602 

like regions, enhancers, conserved regions, and epigenetic markers (Web Resources). For cell-type 603 

matched candidate cis-regulatory elements (CREs), we downloaded CRE peaks in PBMC cells identified 604 

by scATAC-seq101. We extracted CREs from cell types matched with cell types in OneK1K based on 605 

labels and marker genes (Table S8). For enhancers and promoters, we collected 33 samples for 6 cell 606 

types from EpiMap and used bedtools to merge peak regions from different samples in the same cell 607 

type (Table S9). Lastly, to interrogate the accuracy of sc-eQTL linked to target genes, we obtained the 608 

enhancer-gene links identified by SCENT57 in B cells, T/NK cells, and Myeloid cells. Cell types were 609 

matched based on labels (Table S10). We removed ENCODE promoter-like regions from SCENT peaks 610 

to retain putative enhancer regions.  611 



 

For enrichment analysis on scATAC-seq, EpiMap enhancers, and promoters, we created 612 

annotations for cis-SNPs taking the value of 1 if falling within the CRE region and 0 otherwise. For every 613 

eGene, we performed logistic regression similar to torus102 by fitting 𝑙𝑜𝑔𝑖𝑡(𝑃𝐼𝑃𝑘,𝑗) = 𝛽0 + 𝛽𝑘 ,𝑎𝑎𝑘,𝑗 , where 614 

𝑗 denotes cis-SNPs in eGene 𝑘 and their annotation 𝑎. To obtain a single enrichment score for every 615 

annotation in a cell type, we performed a fixed effect meta-analysis using fitted slopes and their standard 616 

errors across all eGenes. Specifically, the meta-analyzed slope over eGenes is (∑ 𝛽𝑘,𝑎𝑘  /𝑊𝑘,𝑎)/(∑ 𝑊𝑘,𝑎𝑘 ) 617 

with variance 1/ ∑ 𝑊𝑘,𝑎𝑘 , where 𝑊𝑘,𝑎 = 1/𝑆𝐸(𝛽𝑘,𝑎)2. When comparing sc-eQTLs against bulk-eQTLs 618 

enrichment, we meta-analyzed summary statistics across cell types. 619 

To calculate the enrichment of sc-eQTLs in enhancer-gene pairs identified by SCENT, we defined 620 

the enrichment score for every eGene as: 621 

𝑆𝑐𝑜𝑟𝑒𝑒𝐺𝑒𝑛𝑒  =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑎𝑢𝑠𝑎𝑙 𝑆𝑁𝑃 𝑖𝑛 𝑎𝑛𝑛𝑜𝑡𝑎𝑡𝑖𝑜𝑛𝑒𝐺𝑒𝑛𝑒  / 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑖𝑠 − 𝑆𝑁𝑃 𝑖𝑛 𝑎𝑛𝑛𝑜𝑡𝑎𝑡𝑖𝑜𝑛𝑒𝐺𝑒𝑛𝑒

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑎𝑢𝑠𝑎𝑙 𝑆𝑁𝑃𝑒𝐺𝑒𝑛𝑒/𝑁𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑖𝑠 − 𝑆𝑁𝑃𝑒𝐺𝑒𝑛𝑒
 622 

Then we calculated the enrichment for each cell type by taking an average of 𝑆𝑐𝑜𝑟𝑒𝑒𝐺𝑒𝑛𝑒 . To evaluate 623 

the uncertainty of this mean enrichment score, we calculated the variance of this mean enrichment by 624 

bootstrapping 1,000 iterations. 625 

Cell type sharing of sc-eQTLs 626 

To investigate cell type specificity or sharing of sc-eQTLs, we performed the mashr analysis on 2,256 627 

fine-mapped sc-eQTL (PIP≥0.5) with complete summary statistics across 14 cell types 58 (Web 628 

Resources). We first constructed a “finemap sc-eQTL” Z score matrix of size 2,256 x 14. To estimate 629 

residual covariance between cell types due to sample overlap, we constructed a null sc-eQTL matrix 630 

(21,542 x 14) by randomly sampling from 2 SNPs in every gene with max |Z| < 2 across all cell types. 631 

Following the instructions described elsewhere 58, we used a data-driven approach to estimate 632 

the covariance matrix of the sc-eQTL effect. In brief, we first used the “finemap sc-eQTL” matrix to create 633 

27 candidate covariance matrices including empirical covariance of Z score, 5 rank-1 approximation to 634 

the covariance matrix, rank-5 approximation, and 19 canonical covariance matrices created by 635 

cov_canonical(). Then we applied cov_ed() to estimate the covariance pattern by extreme deconvolution. 636 

Lastly, we estimated the mixture weight by fitting the mashr model on the null sc-eQTL matrix using 27 637 

covariance patterns and residual covariance. Lastly, we fitted mashr on the “finemap sc-eQTL” matrix to 638 

obtain posterior effect estimates and local false sign rate (LFSR) using the mixture estimates from above. 639 

Since we used the Z score model of mashr, we converted the posterior estimate back to the effect scale 640 

by multiplying their standard errors as described elsewhere 58. 641 

To count for sc-eQTL sharing, we first selected 2,012 sc-eQTLs with LFSR < 0.05, which was 642 

similar to FDR control. For each significant sc-eQTL, we called the cell type with the strongest mashr 643 

effect size as discovery cell type. We considered two types of eQTL sharing: 1) “share by sign” means 644 

the other cell type shared the sign of effect with the discovery cell type; 2) “share by magnitude” means 645 

conditioning on “share by sign”, the magnitude was within a factor of 2 compared to the discovery cell 646 

type. 647 



 

For enrichment analysis of scATAC-seq peaks, we first used bedtools subtract -A recursively to 648 

identify peaks exclusive to each cell type, i.e., cell-type-specific peaks. Then we calculated the 649 

enrichment score using: 650 

𝐸𝑛𝑟𝑖𝑐ℎ𝑚𝑒𝑛𝑡𝐶𝑇  =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑇−𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝑒𝑄𝑇𝐿𝑠 𝑖𝑛 𝐴𝑛𝑛𝑜𝑡𝐶𝑇/ 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑛𝑎𝑙𝑦𝑧𝑒𝑑 𝑒𝑄𝑇𝐿𝑠 𝑖𝑛 𝐴𝑛𝑛𝑜𝑡𝐶𝑇

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑇−𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝑒𝑄𝑇𝐿𝑠 / 𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑛𝑎𝑙𝑦𝑧𝑒𝑑 𝑒𝑄𝑇𝐿𝑠
, 651 

where CT refers to cell type and AnnotCT is cell-type-specific peaks. To obtain standard errors for the 652 

enrichment, we performed bootstrapping with 1,000 iterations on the cell type labels for CT-specific 653 

eQTLs. 654 

Integration sc-eQTLs with GWASs 655 

To assess the overlap between sc-eQTL and GWAS risk variants, we performed an S-LDSC analysis on 656 

16 GWAS results for blood and immune-related traits (Web resources; Table S7). Firstly, we created 657 

annotations using SNPs in credible sets of fine-mapped eGenes from 14 cell types (as recommended in 658 

ref. 91). We constructed three sets of annotations for 1) cell-type sc-eQTL: a union of credible sets of 659 

eGenes per cell type; 2) sc-eQTL_union: a union of credible sets from 1) across all cell types; 3) bulk-660 

eQTL: credible sets of eGenes in bulk-eQTL results. Then we annotated SNPs using European 661 

individuals from 1000 Genome Project and performed S-LDSC analysis using these annotations (Web 662 

resources). To estimate heritability, we used baseline-LD v2.2 model (96 annotations) as recommended 663 

in ref.103 to obtain estimates reducing biases from MAF- and LD-dependent architectures. To identify the 664 

likely causal cell types associated with each GWAS trait, we fitted the baseline model v1.2 (53 665 

annotations) to optimize statistical power as recommended in ref.104. To account for background non-cell-666 

type-specific eQTLs in the baseline model, we construct an additional annotation by taking a union of 667 

fine-mapped SNPs in 95% credible sets from SuSiE results across 49 GTEx tissues (Web resources) 668 

and sc-eQTL_union from our OneK1K results in order to identify cell-type-specific effects. We focused 669 

on two metrics: 1) the proportion of heritability explained by each annotation ℎ2(𝐶) from the baseline-LD 670 

v2.2 model result, and 2) the standardized coefficient 𝜏𝑐
∗ calculated by: 671 

𝜏𝑐
∗ = τc 𝑠𝑑(𝜏𝑐)/(ℎ2/𝑀), 672 

where 𝜏𝑐, 𝑠𝑑(𝜏𝑐), ℎ2 were estimated from the baseline model and 𝑀 was the total number of SNPs that 673 

ℎ2
𝑔 was computed on (𝑀 = 5,961,159) using 1000 Genome Project and baseline v1.2 model. Here 𝜏∗ is 674 

the change in per-SNP heritability with one standard deviation increase in annotation, which makes it 675 

comparable between annotations and GWAS traits. The P values are one-sided hypothesis test for 𝜏∗ > 676 

0. 677 

  678 



 

Figures 679 

Figure 1: Negative binomial outperforms other models in identifying sc-680 

eQTLs in realistic simulations 681 

We simulated single-cell read counts using library size observed in three cell types (CD4NC, BIN, Plasma) 682 

representing different levels of cell type proportions (high, medium, low). We reported the type I error rate 683 

(ℎ2
𝑐𝑖𝑠 = 0) (A) and power (B) of jaxQTL-linear, jaxQTL-negbinom, jaxQTL-Poisson, SAIGE-QTL, and 684 

tensorQTL models across different sample-coverage (i.e., percentage of non-zero expression read 685 

counts). We fixed cis-heritability ℎ2
𝑐𝑖𝑠 = 0.05, random intercept variance 𝜎2

𝑢 (modeling similarity of cell 686 

read counts within the same person) = 0.2, sample size = 1,000, and MAF = 0.2; results when varying 687 

these parameters are reported in Figures S5-S8. Error bars represent 95% confidence intervals (CIs) 688 

estimated from 500 replicates. The dashed line in (A) represents a type I error of 0.05. SAIGE-QTL 689 

assumes single-cell counts while the rest assumes pseudobulk counts. 690 

 691 



 

Figure 2: jaxQTL improves power for eGene discovery in the OneK1K 692 

dataset. 693 

We compared eGene findings in OneK1K across models and software at FDR < 0.05. (A) For model 694 

comparison, we reported the number of eGenes identified by jaxQTL-negbinom, jaxQTL-linear, and 695 

jaxQTL-Poisson for genes with sample-coverage > 1%. (B) For software comparison, we reported the 696 

number of eGenes identified by jaxQTL (negbinom), jaxQTL (use ACAT-V instead of permutation 697 

method), tensorQTL, and SAIGE-QTL for genes with sample-coverage > 10% of individuals. The 698 

asterisks denote the cell type in which jaxQTL (negbinom) identified more eGenes compared with the 699 

linear model in (A) or SAIGE-QTL in (B) after Bonferroni correction. See details of description on cell 700 

types in Table S2. Numerical results are reported in Table S3, S4.  701 

 702 
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 704 
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Figure 3: jaxQTL sc-eQTLs replicate in European and Asian samples 713 

We performed replication analysis for 18,907 sc-eQTLs identified by jaxQTL in CLUES study. (A) Of 714 

the lead SNP-eGene pairs found in matched cell types (panels) among 88 European- and 88 Asian-715 

ancestry individuals (14,229 and 13,579 sc-eQTLs respectively), we reported the replication rate at 716 

FDR < 0.05 by ancestry. (B) We plotted the adjusted sc-eQTL effect estimated by jaxQTL in CLUES 717 

versus OneK1K samples (see Methods). Colored points are pairs replicated at FDR < 0.05 in CLUES 718 

samples and grey points are otherwise. 35 and 20 pairs with absolute adjusted sc-eQTL effect 719 

estimate > 2 were truncated for visualization (see complete results in Figure S16, S17 and Table S5). 720 

The colored line in (B) is a fitted linear regression line with a 95% confidence band. T4: CD4+ T cells; 721 

T8: CD8+ T cells; NK: natural killer cells; cM: CD14+ conventional monocytes; ncM: CD16+ 722 

unconventional monocytes; cDC: conventional dendritic cells. 723 

 724 



 

Figure 4: sc-eQTLs are more enriched in cell-type-matched CREs than 725 

bulk-eQTLs 726 

We performed enrichment analysis of sc-eQTLs and bulk-eQTLs using their fine-mapping results and 727 

diverse annotations. (A) We report the odds ratio for eQTLs enrichment within 12 S-LDSC representative 728 

baseline annotations (see Methods). (B) For fine-mapped sc-eQTLs with PIP≥0.5, we report the fraction 729 

of fine-mapped eQTLs falling in three distance to TSS bins. (C) We report the enrichment in sc-eQTLs 730 

per cell type and bulk-eQTLs within 3 types of cell-type-specific functional annotations; we report meta-731 

analysis results across 14 cell types at the bottom of each dataset. Error bars represent 95% CIs. 732 

Numerical results are reported in Tables S11-14. 733 

 734 

 735 
 736 



 

Figure 5: sc-eQTL location predicts cell-type specificity 737 

We investigated sc-eQTL sharing across cell types by performing mashr analysis 58 on 2,012 OneK1K 738 

sc-eQTLs fine-mapped in at least one cell type; as a baseline, we also investigated sc-eQTL sharing by 739 

simple counting approach. (A) We report the fraction of sc-eQTL shared across different numbers of cell 740 

types using three approaches: a simple counting approach, mashr estimates of sharing by magnitude 741 

(i.e., the magnitude of effect size is within a factor of 2 compared to the strongest signal), mashr estimates 742 

of sharing by sign (i.e. the sign of effect size is shared with this discovery cell type, i.e., the cell type with 743 

the strongest signal). (B) We report the distance to TSS for sc-eQTLs identified as cell-type-specific or 744 

shared in at least 2 cell types using a simple counting approach and mashr. The median value of 745 

distances is displayed as a band inside each box; boxes denote values in the second and third quartiles; 746 

the length of each whisker is 1.5 times the interquartile range, defined as the height of each box. 747 

Numerical results are reported in Tables S15. 748 

 749 

 750 
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Figure 6: sc-eQTLs explain more heritability than bulk-eQTLs for 753 

immune-related GWAS traits. 754 

(A) We report the proportion of heritability (h2) explained by SNP-annotations built from the union of sc-755 

eQTLs and bulk-eQTLs for 16 GWAS blood and immune-related diseases. Error bars denote 1 standard 756 

error of the corresponding estimates. (B) We report S-LDSC standardized effect size (𝜏∗) and its 757 

associated P values obtained for 13 traits and 12 eQTL annotations; 𝜏∗ represents the proportionate 758 

change in per-SNP h2 associated with 1 standard deviation change of annotation value after conditioning 759 

to baseline SNP-annotations. Only trait-annotation pairs with significant 𝜏∗ (after FDR correction) were 760 

plotted. The size of the dot is proportional to the standardized effect size 𝜏∗, and the colorness of the dot 761 

is proportional to -log10(P). Numerical results are reported in Tables S16, S17. 762 

 763 

 764 
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Figure 7: sc-eQTLs prioritize candidate genes missed by bulk-eQTLs. 766 

We present an example showing that OneK1K sc-eQTLs in CD4NC and CD8NC can nominate IL6ST as a 767 

candidate gene for RA, while OneK1K bulk-eQTLs cannot. We report RA GWAS results at the locus 768 

highlighting GWAS leading SNP rs7731626 (chr5:55444683:G>A) (1st row), significant IL6ST sc-eQTLs 769 

in CD4NC and CD8NC T cells (2nd and 3rd row), non-significant (represented by open circle) sc-eQTLs in 770 

BMem, NK and MonoC cells (4th to 6th row), non-significant bulk-eQTLs (7th row), PCHi-C links 73 between 771 

rs7731626 loci and TSS of IL6ST observed in CD4+ and CD8+ T cells (height of the arch is proportional 772 

to the the score of the link; 8th row), and H3K27ac peaks observed in ENCODE samples corresponding 773 

to 5 cell types 74,75 (height of the bar is proportional to the peak intensity; 9 th to 13th row). In Manhattan 774 

plots, we report -log10(P) of all SNPs within ± 500kb from TSS of the IL6ST gene. Different colors were 775 

used to represent matching cell types. The grey shade represent ±5kb away from rs7731626 SNP in RA 776 

GWAS and plots related to T cells.  777 
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