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ARTICLE

Genes with differential expression across ancestries
are enriched in ancestry-specific disease effects
likely due to gene-by-environment interactions

Juehan Wang,1,2,* Zixuan Zhang,1,2 Zeyun Lu,1,2 Nicholas Mancuso,1,2,3 and Steven Gazal1,2,3,*
Summary
Multi-ancestry genome-wide association studies (GWASs) have highlighted the existence of variants with ancestry-specific effect sizes.

Understanding where and why these ancestry-specific effects occur is fundamental to understanding the genetic basis of human diseases

and complex traits. Here, we characterized genes differentially expressed across ancestries (ancDE genes) at the cell-type level by

leveraging single-cell RNA-sequencing data in peripheral blood mononuclear cells for 21 individuals with East Asian (EAS) ancestry

and 23 individuals with European (EUR) ancestry (172,385 cells); then, we tested whether variants surrounding those genes were en-

riched in disease variants with ancestry-specific effect sizes by leveraging ancestry-matched GWASs of 31 diseases and complex traits

(average n � 90,000 and � 267,000 in EAS and EUR, respectively). We observed that ancDE genes tended to be cell-type specific and

enriched in genes interacting with the environment and in variants with ancestry-specific disease effect sizes, which suggests cell-

type-specific, gene-by-environment interactions shared between regulatory and disease architectures. Finally, we illustrated how

different environments might have led to ancestry-specific myeloid cell leukemia 1 (MCL1) expression in B cells and ancestry-specific

allele effect sizes in lymphocyte count GWASs for variants surroundingMCL1. Our results imply that large single-cell and GWAS datasets

from diverse ancestries are required to improve our understanding of human diseases.
Introduction

Multi-ancestry genome-wide association studies (GWASs)

have highlighted that, despite the strong correlation of

causal effect sizes across ancestries,1–9 a non-negligible

fraction of causal variants have ancestry-specific effect

sizes likely due to gene-by-environment (GxE) interac-

tions.7–9 Knowing where and why ancestry-specific effects

of disease risk variants occur is fundamental for under-

standing the genetic basis of human diseases and for

improving the portability of polygenic risk scores across

ancestries.6

Differences in gene regulation across ancestries have

been observed at different levels (e.g., gene expres-

sion,10–18 expression quantitative trait loci [eQTL] effect

sizes,19–21 methylation,22–24 and enhancer activity25) and

could inform which variants have ancestry-specific disease

effect sizes. Indeed, gene regulation differences can also be

due to GxE (e.g., ancestry-specific eQTL effect sizes), and

variants with ancestry-specific disease effect sizes tend to

be enriched in regulatory regions and around genes differ-

entially expressed in tissues interacting with the environ-

ment.7 However, investigating whether ancestry-specific

regulatory and disease architectures are related (because

of shared GxE effects) has been challenging for multiple

reasons. First, there is a limited availability of ancestry-

matched GWASs and functional datasets from non-Euro-

pean descent. Second, the regulatory differences between
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ancestries can be explained by multiple factors that are

challenging to dissociate. Specifically, ancestry-specific

levels of gene expression could be attributed to differences

in allele frequencies of the gene’s eQTL due to genetic drift

or selection (G), different transcriptomic answers to the

ancestry group’s environment (E), or different effect sizes

of the eQTL due to different environments (GxE), or they

could be false positives based on batch effects related to

how multi-ancestry data have been collected.12 Finally,

although gene regulation is cell-type specific,26,27 the cell

types that are the most subject to ancestry-specific gene

regulation and disease effect sizes are unknown.

Here, we aimed to characterize genes differentially ex-

pressed across ancestries (ancDE genes) at the cell-type

level and to test whether ancDE genes are enriched in dis-

ease variants with ancestry-specific effect sizes. We lever-

aged single-cell RNA-sequencing (scRNA-seq) data in pe-

ripheral blood mononuclear cells (PBMCs) for 21

individuals with East Asian (EAS) ancestry and 23 with Eu-

ropean (EUR) ancestry28 (172,385 cells analyzed across

seven main cell types) and ancestry-matched GWASs of

31 diseases and complex traits7 (average n � 90,000 and

� 267,000 in EAS and EUR, respectively). We observed

that ancDE genes tended to be cell-type specific and en-

riched in genes interacting with the environment and in

variants with ancestry-specific disease effect sizes, which

suggests the impact of shared cell-type-specific GxE inter-

actions between regulatory and disease architectures. Our
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Figure 1. An immune multi-ancestry single-cell dataset
(A)We report the UniformManifold Approximation and Projection (UMAP) coordinates and assignment of 172,385 cells to seven immune
cell types28: B cells (B), natural killer (NK) cells, CD4þ and CD8þ T cells (T4 and T8, respectively), conventional dendritic cells (cDCs), and
classical and non-classical monocytes (cMs and ncMs, respectively). The number of cells in each cell type is reported in the legend.
(B) We report cell-type proportions across 21 EAS and 23 EUR individuals; we did not observe significant differences (p < 0.05/7) in cell-
type proportions across ancestries (min p¼ 0.03 in cM; Table S1). Themedian value of each proportion is displayed as a band inside each
box. Boxes denote values in the second and third quartiles. The length of each whisker is 1.5 times the interquartile range (defined as the
height of each box). All values lying outside the whiskers are considered to be outliers.
results imply that large single-cell and GWAS datasets from

diverse ancestries are required to improve our understand-

ing of human diseases.
Material and methods

scRNA-seq data in PBMCs
We used processed scRNA-seq data in PBMCs from Perez et al.28 for

256 individuals of EAS and EUR ancestries. To obtain homoge-

neous samples, we removed 158 systemic lupus erythematosus

cases, 50 controls from the ImmVar study (only European individ-

uals), two outliers in a principal component analysis (PCA)

(Figure S1), and two males in the remaining dataset, thus obtain-

ing a dataset of 21 EAS female controls and 23 EUR female controls

generated in similar batches. These controls were from the Rheu-

matology Clinic at University of California, San Francisco, and

their cells were reported to come from two different batches

(two EAS and four EUR in the first batch, 20 EAS and 21 EUR in

the second batch; one EAS and two EUR had cells from the two

batches), thus minimizing batch effects between the two groups.

We focused on the seven most abundant cell types: B cells (B),

natural killer (NK) cells, CD4þ and CD8þ T cells (T4 and T8,

respectively), conventional dendritic cells (cDCs), and classical

and non-classical monocytes (cMs and ncMs, respectively)

(Figure 1A). After removing cells with more than 20% of their

reads in 13 mitochondrial (MT) genes and cells with less than

500 reads or more than 10,000 reads, we obtained a total of

172,385 cells across the seven cell types with the number of cells

varying from 2,284 to 71,207 (Table S1). Cell-type proportions

did not significantly differ across the two ancestries (Figure 1B;

Table S1).
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For supplementary analyses, we used OneK1K scRNA-seq for

982 Europeans (565 females and 416 males) in PBMCs from Yazar

et al.29 We defined B cells as those labeled ‘‘naive B cell,’’ ‘‘memory

B cell,’’ and ‘‘transitional stage B cell’’; NK cells as those labeled

‘‘natural killer cell,’’ T4 cells as those labeled ‘‘central memory

CD4-positive, alpha-beta T cell,’’ ‘‘naive thymus-derived CD4-pos-

itive, alpha-beta T cell,’’ ‘‘effector memory CD4-positive, alpha-

beta T cell,’’ ‘‘CD4-positive, alpha-beta cytotoxic T cell,’’ and

‘‘CD4-positive, alpha-beta Tcell’’; T8 cells as those labeled ‘‘effector

memory CD8-positive, alpha-beta T cell,’’ ‘‘naive thymus-derived

CD8-positive, alpha-beta T cell,’’ ‘‘central memory CD8-positive,

alpha-beta T cell,’’ ‘‘CD8-positive, and alpha-beta T cell’’; cMs as

those labeled ‘‘CD14-positive monocyte’’; and ncMs as those

labeled ‘‘CD14-low, CD16-positive monocyte.’’ We applied a

similar quality control as described above and obtained a total of

1,175,543 cells for the seven cell types.

Genes differentially expressed across ancestries
For each cell type, we tested whether each gene was differentially

expressed between EAS and EUR individuals. We used a Poisson

linear mixed-effects model with number of reads as the outcome

variable; the donor as a random effect; and ancestry, age, batch,

five first principal components of a PCA computed at the cell-

type level on the 2,000 most variable genes, log of total number

of reads per cell, proportion of genes expressed in a single cell

(cellular detection rate), and fraction of reads in MT genes as fixed

effect covariates. We restricted our analyses to 19,995 genes,30 and

for each cell type, we restricted our analyses to genes with at least

50 reads across all controls (48% of the genes on average). For

main analyses, we defined genes with the top 100 smallest p values

for the ancestry covariate as ancDE genes. We performed a similar

approach to compute genes differentially expressed between
ober 3, 2024



females and males (sexDE genes) using data from Yazar et al.29 We

note that using a Poisson linear mixed-effects model with prin-

cipal components computed at the cell-type level should have

limited the impact of cell-type heterogeneity on ancDE and sexDE

gene results (as reported in Aquino et al.18 and Oliva et al.31). An-

alyses to estimate power in detecting ancDE genes with this sam-

ple size are discussed in Figures S2–S4.

We performed additional analyses in which we recomputed

p values by permuting the ancestry label of the individuals (100

permutations; if p % 0.01, 900 more permutations were per-

formed). Permutations decreased the genomic factor from 1.28

to 1.16 (Figure S5). We observed a large overlap between the top

100 p nominal and top 100 permuted p across cell types: 77%

(78% and 83% for top 200 and top 500, respectively), thus demon-

strating robust ranking of the ancDE genes.

We performed power analyses to detect ancDE genes with two

groups of 21 and 23 individuals by leveraging the Geuvadis data-

set13 (RNA-seq in lymphoblastoid cell lines for n ¼ 89 and 373

individuals of African and European ancestry after GTEx recom-

mended quality-control pipeline, respectively). Analyses were per-

formed on standardized gene expression and adjusted on sex and

five gene expression principal components (PCs).

Gene ontology enrichment analysis
We performed gene ontology (GO) enrichment analysis of ancDE

genes using the R package goseq.32We restricted analyzed pathways

to the biological processes containing from 10 to 1,000 genes. We

defined the reference set of genes as the genes with at least 50 reads

across all samples within investigated cell types.We computed false

discovery rate (FDR) p values using the Benjamini and Hochberg

correction33 implemented in the R p.adjust function.

Cell-type-specific eQTL analyses
To determine whether the cell-type-specific ancDE genes were

driven by allele frequency differences, we leveraged independent

EAS and EUR cell-type-specific eQTLs from Ishigaki et al.34 and Ya-

zar et al.29 For EAS, we leveraged eQTLs in B, T4, T8, NK, and

monocytes; we assigned EAS monocytes eQTLs to ancDE genes

from cMs or ncMs. Genes with significant eQTL were defined as

in Yazar et al.29 (i.e., by computing eQTL q values within each

gene, then computing the FDR-corrected p value of the most sig-

nificant eQTL within each chromosome). For EUR, we defined B

cell eQTL by merging eQTL from cell types labeled as ‘‘B IN’’ and

‘‘B Mem’’; T4 eQTL by merging eQTLs from cell types labeled as

‘‘CD4 ET,’’ ‘‘CD4 NC,’’ and ‘‘CD4 SOX4’’; and T8 eQTL by merging

eQTLs from cell types labeled as ‘‘CD8 ET,’’ ‘‘CD8 NC,’’ and ‘‘CD8

S100B.’’ We defined cDC, cM, nCM, and NK eQTL by considering

eQTL from cell types labeled as ‘‘DC,’’ ‘‘Mono C,’’ ‘‘Mono NC,’’ and

‘‘NK R,’’ respectively. We restricted all analyses to variants with

mean allele frequency (MAF) > 5% in EAS or MAF > 5% in EUR.

We compared the EAS and EUR allele frequency of these eQTL

using 481 EAS and 489 EUR individuals from 1000 Genomes Proj-

ect.35,36 Fixation index (Fst) across EAS and EUR individuals were

computed using the formula37

Fst ¼ E

0
BB@
�bpEAS � bpEUR

�2 �
�

1

2nEAS

þ 1

2nEUR

�
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�
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�
1
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where bpEAS and bpEUR are the allele frequencies estimated in the EAS

and EUR individuals, respectively, nEAS and nEUR are the corre-

sponding sample sizes, and pavg is defined as ðpEAS þpEURÞ= 2.
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To test whether the 329 ancDE genes with EUR independent

eQTL were still significantly differentially expressed after condi-

tioning to the genotypes of these eQTLs, we extracted those

SNPs in the genetic data of Perez et al.28 (genotypes of eQTL

were available for 273 of 329 genes) and replicated our differen-

tially expression analyses for ancDE genes while correcting for

the genotypes of the eQTL.
Estimating enrichment of stratified squared multi-

ancestry genetic correlation using S-LDXR
S-LDXR7 is a method to estimate enrichment of stratified squared

multi-ancestry genetic correlation across functional categories of

SNPs using GWAS summary statistics and ancestry-matched link-

age disequilibrium (LD) reference panels. S-LDXR models per-

allele effect sizes (accounting for differences in allele frequency dif-

ferences between ancestries) of SNP j in two ancestries (labeled as

b1j and b2j) with variance and covariance,

Var
h
b1j

i
¼

X
C

aCðjÞt1C;Var
h
b2j

i
¼

X
C

aCðjÞt2C;Cov
h
b1j; b2j

i
¼

X
C

aCðjÞqC

where aCðjÞ is the value of SNP j for annotation C, t1C and t2C are

the net contribution of annotation C to the variance of b1j and b2j,

respectively, and qC is the net contribution of annotation C to the

covariance of b1j and b2j.

S-LDXR estimates the stratified squared multi-ancestry genetic

correlation, which is defined as

r2g ðCÞ ¼
r2g ðCÞ

h2
g1ðCÞh2

g2ðCÞ
where h2

g1 and h2
g2 are heritabilities in each ancestry, and rg is the

multi-ancestry genetic covariance of each binary annotation C:

rgðCÞ ¼ SjeCðSC0aC0 ðjÞqC0 Þ
where aC0 ðjÞ and qC0 are annotations and coefficients for all anno-

tations C0 included in the analysis, respectively.

Then S-LDXR estimates the enrichment of squared multi-

ancestry genetic correlation, which is defined as

l2ðCÞ ¼ r2g ðCÞ
r2g

where r2g is the squared correlation of the per-allele effect sizes in

the two ancestries (i.e., squared multi-ancestry genetic correla-

tion), and r2g ðCÞ is the squared multi-ancestry genetic correlation

computed within SNPs in C. We note that l2 is not affected

by allele frequency differences across the two ancestries (because

it computes the correlation of per-allele effect sizes and not

effect sizes on normalized genotypes) and that S-LDXR estimates

of l2 were unbiased for annotations with high allele fre-

quency differences in simulations (and conservative for other

annotations).7

We applied S-LDXR using recommended settings, reference files

(i.e., 481 EAS and 489 EUR samples in the 1000 Genomes Proj-

ect36), and a background set of functional annotations (i.e., the

baseline-LD-X model, a set of 62 functional SNP-annotations

known to impact per-allele effect sizes). We applied S-LDXR

on 31 diseases and complex traits7 (average n � 90,000 and

� 267,000 in EAS and EUR individuals, respectively); most of the

results were meta-analyzed across 20 approximately independent

traits, including 10 approximately independent blood and
urnal of Human Genetics 111, 2117–2128, October 3, 2024 2119
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0B Figure 2. Cell-type specificity of ancDE
genes
(A) We report the number of cell-type-spe-
cific ancDE genes (top 100 smallest p
values for each cell type) shared across all
the cell types. We observed that 83% of
ancDE genes were differentially expressed
in a single cell type.
(B) For each cell type, we report the num-
ber of ancDE genes shared across all the
cell types. List of ancDE genes is reported
in Table S3. Across the cell types, 53%–
72% of their ancDE genes were cell-type
specific. Similar patterns were observed
when defining ancDE genes using

the 200 and 500 smallest p values and the 100 smallest permuted p values (Figures S7–S9) and for genes differentially expressed
in males and females29 (Figure S10).
immune-related traits (Table S2). S-LDXR estimated a cross-

ancestry genetic correlation of rg ¼ 0.88 5 0.06 meta-analyzed

across the 20 independent traits (Table S2), consistent with recent

estimates.8,9 Reported p values for heritability enrichments were

two sided (i.e., testing if heritability enrichment is different

from 1); reported p values for l2 and q were one sided (i.e., testing

whether l2 and q are lower than 1 and 0, respectively).

Our analyses included SNP-annotations related to gene sets,

which were constructed by adding 100-kb windows on either

side of the transcribed region of each gene in the set.7,38 All an-

alyses included a SNP-annotation for the 19,995 genes, and

seven SNP-annotations representing the set of genes expressed

in each cell type (i.e., genes with at least 50 reads across all

controls).

Extending S-LDXR to estimate enrichment of stratified

squared sex genetic correlation
We extended S-LDXR to estimate enrichment of stratified squared

sex genetic correlation using GWAS summary statistics computed

inmales and females of the same ancestry and a corresponding LD

reference panel. Here, we applied S-LDXR using recommended set-

tings and the EUR reference file and the baseline-LDmodel version

2.2 used by S-LDSC.39 We downloaded the male and female

GWASs previously identified with sex genetic correlation signifi-

cantly <1 (Bernabeu et al.40) and defined a set of 17 independent

traits with genetic correlation41 < 0.1. We observed consistent

squared sex genetic correlation andmulti-ancestry genetic correla-

tion among annotations of the baseline-LD and baseline-LD-X

models (Figure S6).
Results

Cell-type specificity of genes differentially expressed

between EAS and EUR ancestries

We tested differential gene expression in seven immune

cell types within 21 and 23 healthy individuals of EAS

and EUR ancestry, respectively. We restricted the main an-

alyses to the top 100 differentially expressed genes with

the smallest p values within each cell type, which led to a

list of 545 unique ancDE genes (including only 15 genes

of the major histocompatibility complex [MHC] region)

(Table S3). All further analyses were replicated by using

top 200 and 500 genes with the smallest p values within
2120 The American Journal of Human Genetics 111, 2117–2128, Oct
each cell type; we also replicated our analyses by recomput-

ing p values using permutations.

Among the 545 unique ancDE genes, 452 (83%) were

differentially expressed in a single cell type, thereby sug-

gesting high cell type specificity of differential expres-

sion across ancestries (Figure 2A). Within each cell

type, 53%–72% of ancDE genes were specific to this

cell type (Figure 2B). Genes differentially expressed in

at least two cell types tended to cluster as in hematopoi-

etic lineages, such as lymphoid (NK, B, T4, and T8) and

myeloid cell types (cM, ncM, and cDC) (e.g., 28 genes

were differentially expressed in both T4 and T8 cell

types, and 18 genes were differentially expressed in

cMs and ncMs). Among ancDE genes differentially ex-

pressed in at least two cell types, a large proportion

(86 of 93; 92%) had consistent directions across the

cell types (i.e., overexpressed or underexpressed in all

cell types) (Table S4).

To validate that the cell-type specificity of ancDE genes

was not an artifact of a relatively low number of samples

(despite the high number of cells), we performed the

following supplementary analyses. First, we replicated

this observation when defining ancDE genes using the

200 and 500 smallest p values and the top 100 permuted

p values (82%, 77%, and 87% of unique ancDE genes,

respectively, were differentially expressed in a single cell

type) (Figures S7–S9; Tables S3 and S5). Second, we lever-

aged a larger scRNA-seq with 416 EUR males and 565

EUR females29 (1,175,543 cells across seven similar cell

types) and identified the top 100 genes that were the

most significantly differentially expressed by sex for each

cell type (578 unique sexDE genes). We observed that

86% of sexDE genes were differentially expressed in a sin-

gle cell type, thus confirming that environment differences

affected gene expression at the cell-type-specific level

(Figure S10; Table S6).
AncDE genes are enriched in genes interacting with the

environment

We next sought to investigate whether ancDE genes

tended to be driven by environmental differences
ober 3, 2024



A B C

Figure 3. ancDE genes are driven by allele frequency differences of their eQTL
(A)We report the number of cell-type-specific ancDE genes with at least one EUR eQTL andwithout eQTL in the corresponding cell type.
Dotted boxes represent the number of ancDE genes that would have been observed by chance.
(B)We report mean fixation index (Fst) across EAS and EUR reference populations37 for all ancDE gene eQTL, eQTL of all expressed genes,
and all SNPs. The median value of each expression is displayed as a band inside each box. Boxes denote values in the second and third
quartiles. The length of each whisker is 1.5 times the interquartile range (defined as the height of each box).
(C) Scatterplot of ancDE genes�log10(P) before and after conditioning on their eQTL. Solid points represent ancDE genes that remain in
the top 100 most significantly differentially expressed genes after conditioning on their eQTL.
(i.e., GxE interactions of their eQTL or different gene

expression response to environments with no genetic

mediation), genetic differences (ancestry differences in

allele frequencies of their eQTL), or both.

First, GO enrichment analyses32 revealed that the

545 ancDE genes were enriched in genes involved in

immune response to the environment (FDR-corrected

p ¼ 7.88 3 10�4 for leukocyte activation [GO: 0045321]

pathway; Table S7). At the cell-type level, the most signifi-

cant enriched GO categories were in ncMs (FDR-corrected

p¼ 7.013 10�7 secretory granule [GO: 0030141] pathway),

NK cells (FDR-corrected p ¼ 1.7 3 10�5 for interferon-

gamma-mediated signaling [GO: 0060333] pathway), and

cMs (FDR-corrected p¼ 1.483 10�2 for neutrophil degranu-

lation [GO: 0043312] pathway) (Table S7).We detected even

more significantly enriched pathways involved in immune

response when defining ancDE genes by using the 200

and 500 smallest p values and the 100 smallest permuted p

values (FDR-corrected p ¼ 1.01 3 10�5, 9.26 3 10�7, and

7.253 10�5 for regulated exocytosis [GO: 0045055], symbi-

otic process [GO: 0044403], and leukocyte activation

[GO: 0045321] pathways, respectively). Similar conclusions

wereobtainedwhen removingMHCgenes fromthe analysis

(Table S7).

Second, we investigated whether ancDE genes were due

to allele frequency differences of their eQTLs by leveraging

cell-type-specific eQTLs from 105 EAS34 and 982 EUR indi-

viduals29; cDC eQTLs were not available for EAS individ-

uals, and we used EAS monocyte eQTL for both cMs and

ncMs. More than half of cell-type-specific ancDE genes

(385 of 700; 55%) had at least one independent eQTL in

the corresponding cell type, which is 1.9 times more

than what would be expected by chance (Figure 3A); these

numbers should be considered a lower bound because the
The American Jo
statistical power to detect eQTLs is highly associated with

the eQTL dataset sample size.42 Of note, these eQTLs

tended to have extremely high fixation index (Fst) across

EAS and EUR reference populations36 (mean Fst ¼ 0.19

across all ancDE gene eQTLs vs. mean Fst ¼ 0.10 across

eQTL for all expressed genes, p ¼ 6 3 10�37 for difference;

Figure 3B). When replicating differentially expression ana-

lyses for ancDE genes for which genotypes of the eQTL

were available (329 of 385), we found that 74% of these

genes (243 of 329) did not remain in the top 100 most

significantly differentially expressed genes after condition-

ing on their eQTL (Figure 3C). By multiplying the propor-

tion of ancDE genes with known eQTLs (55%) to the pro-

portion of these genes that were not differentially

expressed after conditioning to their eQTL (74%), we esti-

mated that at least 41% of ancDE genes (0.553 0.74) could

be driven by allele frequency differences of their eQTL

across ancestries. We replicated all our analyses and con-

clusions by defining ancDE genes using the 200 and 500

genes with the smallest differential gene expression

p values within each cell type (Figure S11) and when

using eQTL from EAS and EUR individuals separately

(Figure S12).

Finally, we investigated whether allele frequency differ-

ences of eQTLs across ancestries were due to adaptation to

new environments or to genetic drift. We observed that an-

cDE genes with eQTLs were also enriched in genes involved

in immune response (minimum FDR-corrected p ¼ 4.47 3

10�3, 4.13 3 10�3, 2.56 3 10�4, and 7.98 3 10�4 for leuko-

cyte activation [GO: 0045321], response to interferon-

gamma [GO: 0034341], defense response [GO: 0006952],

and fatty acid derivative biosynthetic process [GO:

1901570] pathways when considering the 100, 200, and

500 most-significant ancDE genes and the top 100
urnal of Human Genetics 111, 2117–2128, October 3, 2024 2121
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Figure 4. Squared multi-ancestry genetic correlation enrich-
ment for variants surrounding ancDE genes
We report squared multi-ancestry genetic correlation enrichment
(l2) for each independent trait and meta-analyses results across
groups of traits. Orange bars represent blood and immune-related
traits, gray bars represent other traits, and the blue bar represents
the meta-analysis across all traits. Error bars represent 95% confi-
dence intervals (CIs) and were only plotted for traits with l2 value
significantly <1 for visualization purposes; CIs for all traits are re-
ported in Figure S14. Numerical results are reported in Tables S8
and S9. We observed l2 > 1 for AMN (1.39, 95% CI ¼ [0.61,
2.17]) and MDD (1.59, 95% CI ¼ [�0.61, 2.17]), two of the most
underpowered traits of this study; althoughmulti-ancestry genetic
correlation rg has the biologically plausible [�1,1] range, l2 can
biologically be >1 if within the annotation is greater than the
genome-wide rg ; also, l

2 > 1 for these two traits has no biological
meaning because of the large 95% CIs.
AF, atrial fibrillation; AMN, age at menarche; AMP, age at
menopause; BASO, basophil count; BMI, body mass index;
EGFR, estimated glomerular filtration rate; EO, eosinophil count;
HBA1C, hemoglobin A1c; HTC, hematocrit; LYMPH, lymphocyte
count; MCHC, MCH concentration; MCV, mean corpuscular vol-
ume; MDD, major depressive disorder; NEUT, neutrophil count;
PLT, platelet count; RA, rheumatoid arthritis; SBP, systolic blood
pressure; TC, total cholesterol; TG, triglycerides.
permuted p values, respectively; Table S7), which suggests

that allele frequency differences of their eQTL might

have been driven by adaptation to new environments

rather than genetic drift. Similarly, 27% of cell-type-specific

sexDE genes (186 of 700) had at least one independent EUR

eQTL (Figure S13), so genes with eQTL can be differentially

expressed even without differences in allele frequencies.

All together, these results suggest that ancDE genes are

enriched in genes interacting with the environment.

While we estimated that at least 41% of ancDE genes could

be explained by allele frequency differences of their eQTLs,

it is likely that a significant fraction of these differences was

driven by adaptation to new environments.
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ancDE genes are enriched in ancestry-specific causal

effect sizes of complex traits

We created a SNP annotation for the 545 unique ancDE

genes (annotation representing 4.8% of investigated com-

mon SNPs) and analyzed it using S-LDXR on 31 diseases

and complex traits. We then meta-analyzed results across

20 approximately independent traits. SNPs in ancDE genes

were significantly enriched in SNP-heritability (h2) in EAS

and EUR GWASs (h2 enrichment ¼ 2.07 5 0.18, p ¼ 3 3

10�9 in EAS; h2 enrichment ¼ 1.71 5 0.13, p ¼ 2 3 10�8

in EUR), which highlights the impact of ancDE genes on

human diseases and complex traits.

SNPs within ancDE genes were extremely depleted of

squared multi-ancestry genetic correlation (l2 ¼ 0.69 5

0.04, p ¼ 6 3 10�13; Figures 4 and S14; Tables S8 and S9)

and more depleted (and most significantly depleted) than

any other annotation from the baseline-LD-X model

(Table S10). We detected significant depletions (p < 0.05/

31) for 6 traits, including hematocrit (l2 ¼ 0.35 5 0.12,

p ¼ 5 3 10�8), lymphocyte count (l2 ¼ 0.52 5 0.12, p ¼
2 3 10�5), and height (l2 ¼ 0.71 5 0.09, p ¼ 5 3 10�4)

(Table S8). The ancDE gene l2 was also significantly lower

than the l2 estimated on all genes (l2 ¼ 0.95 5 0.01, p ¼
33 10�9 for difference with ancDE genes) and on genes ex-

pressed in the seven cell types that were not ancDE genes

(l2 ¼ 0.90 5 0.01, p ¼ 4 3 10�6 for difference with ancDE

genes). By performing 100 random sampling of 545 genes,

we also validated that ancDE genes were significantly

depleted in multi-ancestry genetic correlation (l2 ¼
0.84 5 0.01, p < 1/100 for difference with ancDE genes;

Figure S15). Finally, the net contribution of the ancDE

gene annotation to the covariance of effect sizes (q, see ma-

terial andmethods) was among themost significant binary

annotations (p ¼ 0.02, q < 0 for 15 of 20 traits; Tables S8–

S10), meaning that multi-ancestry genetic correlation

depletion of this annotation was not fully captured by ex-

isting annotations of the baseline-LD-X model.

As expected, the l2 was even smaller when meta-

analyzed across 10 approximately independent blood

and immune-related traits (l2 ¼ 0.64 5 0.07, p ¼ 7 3

10�8) and remained significantly depleted in the 10 re-

maining traits (l2 ¼ 0.76 5 0.06, p ¼ 3 3 10�5). Similar

conclusions were obtained when defining ancDE genes us-

ing the 200 and 500 smallest p values and the permuted p

values (Table S9). We reran S-LDXR on two distinct anno-

tations corresponding to ancDE genes with and without

eQTL (each annotation represented 2.8% and 2.1% of

investigated SNPs, respectively). We observed depletion

of squared multi-ancestry genetic correlation for the two

annotations (l2 ¼ 0.71 5 0.07 and l2 ¼ 0.62 5 0.02,

respectively) (Table S9). These results suggest that even if

genes were differentially expressed due to allele frequency

differences of their eQTL, these genes are likely enriched in

ancestry-specific causal effect sizes.

To support that genes with varying levels of expression in

different environments are enriched in context-specific

causal effect sizes, we first leveraged genes differentially
ober 3, 2024
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Figure 5. Squared multi-ancestry genetic correlation enrich-
ment for variants surrounding cell-type-specific ancDE genes
We report squared multi-ancestry genetic correlation enrichment
(l2) for cell-type-specific ancDE gene annotations meta-analyzed
across 20 independent traits. Error bars represent 95%CIs. Numer-
ical results are reported in Table S9.
expressed between two other ancestry groups: African and

EUR individuals in five PBMC types from Randolph

et al.17 (90 individuals) and Aquino et al.18 (160 individ-

uals).We observed significant depletion of squared ancestry

genetic correlation within our EAS and EUR GWASs (l2 ¼
0.63 5 0.05, p < 2 3 10�12, and l2 ¼ 0.82 5 0.04,

p < 9 3 10�6, respectively), thereby suggesting that GWAS

discordant effects between ancestries around ancDE genes

are more likely due to interaction with the environment

than different allele frequency differences of their eQTL.

Then, we extended S-LDXR to stratify squared genetic cor-

relation between male and female GWASs and applied it

to sexDE gene annotations on 17 independent traits previ-

ously identified with sex genetic correlation significantly

less than 1 (Bernabeu et al.40) (see material and methods).

We observed significant depletion of squared sex genetic

correlation within our male and female GWASs (l2 ¼
0.91 5 0.02, p < 2 3 10�7) and similar depletion when

stratifying sexDE genes with and without EUR eQTL (l2 ¼
0.895 0.03 and l2 ¼ 0.905 0.02, respectively) (Table S11).

Finally, to refine the ancDE gene l2 signal, we applied

S-LDXR analyses by creating SNP-annotations for each of

the seven main cell types (each annotation represents

0.8%–1.0% of investigated SNPs). The seven SNP-annota-

tions were all depleted of squared multi-ancestry genetic

correlation (l2 < 0.78; Figure 5; Table S9), and all cell types

except T8 were significantly depleted. Although none of

the l2 values significantly differed from each other, we

observed the smallest and most significant depletion for

the ancDE genes in B cells (l2 ¼ 0.35 5 0.06, p ¼ 1 3

10�24) and cDC cells (l2 ¼ 0.36 5 0.10, p ¼ 6 3 10�10).

The l2 values were smaller for the B and cDC annotations
The American Jo
when meta-analyzed across 10 approximately indepen-

dent blood and immune-related traits (l2 ¼ 0.30 5 0.07,

p ¼ 4 3 10�21 and l2 ¼ 0.21 5 0.12, p ¼ 1 3 10�10, respec-

tively); this trend was not observed across the 10 remain-

ing traits (Figure S16; Table S9). Similar trends were ob-

tained when defining ancDE genes using the 200 and

500 smallest p values and the top 100 permuted p values

(Figures S17–S19; Table S9).

Altogether, these results demonstrate discordant causal

effect sizes between EAS and EUR GWASs for variants sur-

rounding ancDE genes, likely due to GxE interactions.

The magnitude of l2 was similar for genes with and

without eQTL, which suggests that even if a gene is differ-

entially expressed because of different allele frequencies of

its eQTL, this gene is likely to also be enriched in GxE ef-

fects (because differences in allele frequencies might have

been driven by adaptation). Finally, for blood- and im-

mune-related traits, we observed stronger discordant effect

sizes for SNPs within ancDE genes in B cells and cDCs, two

cell types that initiate and shape the adaptive immune

response to new environments.

Illustrating ancDE genes with strong GWAS discordant

effect sizes

Here, we illustrate how different environments may have

led to differential expression of the ancDE gene MCL1 in

B cells and different allele effect sizes around MCL1 in

lymphocyte count (LYMPH) EAS and EUR GWASs43

(Figure 6). MCL1 is essential to B cell development44–46

and was differentially expressed between EAS and EUR in-

dividuals only in B cells (nominal p ¼ 2 3 10�5, permuted

p < 0.001; Figure 6A). No significant MCL1 eQTL in B cells

were reported in EAS34 or EUR individuals.29

We observed significant associations in the LYMPH EUR

GWAS (minimum p ¼ 33 10�42 for rs11204702) forMCL1

but not in the LYMPH EAS GWAS (p at rs11204702 in

EAS ¼ 0.63) (Figure 6B). We observed significant different

marginal allele per-effect sizes for the EUR most significant

loci (per-allele effect size for rs11204702 A allele¼ 0.0025

0.005 and 0.0265 0.002 in EAS and EUR, respectively; p¼
6 3 10�6 for difference; Figure 6C), similar allele fre-

quencies for the most associated variants in EUR individ-

uals (Figure 6D), and similar LD patterns with the lead

SNP in both ancestries (Figure S20). Hence, these discor-

dant effects were not driven by power issues due to

different GWAS sample sizes (n � 89,000 in EAS47 vs. n �
525,000 in EUR48) or different allele frequencies and LD

structure across the ancestries, respectively.

We also found no significant association in LYMPH

GWASs performed in individuals of African and Latino

ancestry and significant different marginal allele per-effect

sizes for rs11204702 (p ¼ 0.001 and 0.01 for EUR-African

and EUR-Latino differences, respectively; Figure S21),

which suggests a EUR-specific effect for rs11204702.

MCL1 expression in B cells was significantly lower in EUR

than African individuals in Aquino et al.18 (p ¼ 3 3 10�4;

this association was not observed in Randolph et al.17),
urnal of Human Genetics 111, 2117–2128, October 3, 2024 2123
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Figure 6. Discordant results between EAS and EUR lymphocyte count GWAS around the B cell ancDE gene MCL1
(A) We report logtp10k for MCL1 pseudo-bulk gene expression in B cells between EAS and EUR individuals. The median value of each
expression is displayed as a band inside each box. Boxes denote values in the second and third quartiles. The length of eachwhisker is 1.5
times the interquartile range (defined as the height of each box). All dots represent observed values.
(B) We report lymphocyte count (LYMPH) �log10 GWAS p values computed for individuals of EAS and EUR ancestry. The orange region
represents 100-kb windows on either side of the MCL1 gene body.
(C)We report LYMPHmarginal effect sizes computed for individuals of EAS and EUR ancestry. Marginal effects are plotted using the EUR
risk allele as the reference. Blue lines represent 95% CIs for the most associated SNPs in the EUR GWAS.
(D) We report EAS allele frequency (AF) and EUR MAF in 1000 Genomes Project. Color intensity in (B–D) represents GWAS �log10(p) in
EUR GWAS; only SNPs with p < 5 3 10�8 in the EUR GWAS were plotted in (C and D).
which is consistent with our observations for EAS and

EUR individuals. All together, these results illustrate that

different environments can lead to both ancestry-specific

gene expression and ancestry-specific GWAS allele effect

sizes for this gene.
Discussion

Although causal effect sizes of human diseases and com-

plex traits tend to be highly correlated across ancestries

(rg ¼ 0.88 5 0.06 for the 20 independent traits analyzed

in this study, consistent with recent estimates8,9), under-
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standing where and why ancestry-specific effects of disease

risk variants occur is fundamental for understanding the

genetic basis of human diseases and for improving the

portability of polygenic risk scores across ancestries.6

Here, we characterized ancestry-specific gene regulation ar-

chitectures at the cell-type level and investigated their

overlap with ancestry-specific disease architectures. We

analyzed scRNA-seq data for PBMCs from 44 individuals

of EAS or EUR ancestry and observed that ancDE genes

tended to be differentially expressed in a single cell type

and were enriched in genes involved in immune response

to the environment. At least one-third of ancDE genes

could be due to allele frequency differences of their eQTLs
ober 3, 2024



(although a large fraction of these eQTLs likely have allele

frequency differences due to adaptation to a new environ-

ment). Then, by leveraging ancestry-matched GWAS of

31 diseases and complex traits, we determined that

squared multi-ancestry genetic correlation enrichment

was l2 ¼ 0.69 5 0.04 for SNPs surrounding ancDE genes,

representing the lowest correlation reported by S-LDXR;

numbers were similar when stratifying genes with and

without eQTL, which suggests that even if genes were

differentially expressed due to allele frequency differences

of their eQTL, they are likely enriched in ancestry-specific

effect sizes. These depletions were driven by ancDE genes

from B cells (l2 ¼ 0.35 5 0.06) and cDCs (l2 ¼ 0.36 5

0.10). Finally, we illustrated how GxE interactions may

have led to differential expression of the ancDE gene

MCL1 in B cells, different MCL1 eQTL effect sizes in blood,

and different allele effect sizes around MCL1 in LYMPH

EAS and EUR GWASs.

To validate that cell-type specificity of ancDE genes

were not driven by low single-cell sample size and that

our S-LDXR results were not driven by different allele

frequency and LD structure across ancestries, we also

extended our approach to sex-specific regulatory and

complex trait architectures and observed similar patterns.

Specifically, by detecting sexDE genes in a larger single-

cell dataset29 (1,175,543 cells from 982 donors), we

showed that sexDE genes were also cell-type specific

(Figure S7; Table S6) and that nearly one-quarter had at

least one independent eQTL (Figure S13), so genes with

eQTLs can be differentially expressed even without differ-

ences in allele frequencies. Then, by extending S-LDXR to

sex-specific effect sizes in sex-specific GWASs (not subject

to allele frequency differences across investigated ances-

tries), we observed a significant depletion of squared sex

genetic correlation within 17 independent male and fe-

male GWASs40 (l2 ¼ 0.91 5 0.02, p < 2 3 10�7)

(Table S11), which confirms the impact of GxE interac-

tions on GWAS effect sizes. In supplementary analyses,

we also assessed discordant effects of sex-stratified GWAS

within functional annotations from the baseline-LD

model39 and showed similar enrichment of squared

multi-ancestry and sex genetic correlations across annota-

tions (Figure S6).

Our findings have several implications for downstream

analyses. First, they provide a partial source of explana-

tion for the non-transportability of polygenic risk scores

across ancestries.6 Although modeling the environment

in risk prediction is challenging, accounting for genes in-

teracting with the environment (or ancDE genes) in rele-

vant cell types could help downweigh variant effects

when computing polygenic risk scores. Second, our results

highlight the benefits of generating single-cell datasets for

individuals of non-European ancestry because cell-type

specificity is crucial to identify ancestry-specific and dis-

ease regulatory mechanisms.38,49–54 Also multi-ancestry

functional data may increase power in multi-ancestry

GWAS meta-analysis,7,55 fine-mapping,7,56 and transcrip-
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tome-wide association studies57 when disease effect sizes

and/or gene regulation is ancestry specific. Third, our re-

sults highlight the disease relevance of ancDE genes that

are driven by allele frequency differences of their eQTL

across ancestries, thereby suggesting the impact of selec-

tion (rather than genetic drift) on variants regulating

genes in the immune system. Characterizing ancDE genes

across multiple ancestries should shed light on human

adaptation to new environments. Finally, although our re-

sults broadly highlight the impact of GxE on the multi-

ancestry genetic architecture of human diseases, they

also suggest the impact of GxE within a given ancestry

and that accounting for environment heterogeneity

within a sample can shed light on disease genetic archi-

tectures. We propose a framework leveraging single-cell

and GWAS datasets that could be extended to analyze

the impact of any environment interactions into complex

traits, as performed here by extending S-LDXR to analyze

the impact of sex on the genetic architectures of complex

traits within Europeans.

Our work has several limitations. First, although our da-

taset was (to our knowledge) the largest multi-ancestry

scRNA-seq dataset publicly available, it included only 44

individuals. However, we observed (1) reasonable power

to detect the most differentially expressed ancDE genes

(Figures S2–S4), (2) that our ancDE genes were significantly

enriched in genes interacting with the environment

(Table S7), (3) that ancDE genes with eQTL are significantly

enriched in eQTL with high fixation index (Figure 3B), (4)

extremely significant S-LDXR results obtained for the top

100 ancDE genes in ncMs (one of the lowest abundant

cell types with 5,149 cells), thus suggesting that the gene

ranking of our analyses is robust, and (5) similar conclu-

sions for ancDE cell-type specificity and enrichment in

GWAS discordant effect sizes when detecting sexDE genes

in a larger dataset. Altogether, these results suggest that our

conclusions on ancDE genes are robust for the low sample

size of the dataset that has been used to detect them,

although we caution that our list of ancDE genes

(Table S3) is imperfect. Low sample size also prevented us

from performing eQTL analyses and directly quantifying

ancestry-specific eQTL effect sizes at the cell-type level.

Despite available cell-type-specific eQTLs from Biobank

Japan and OneK1K, these eQTLs were obtained using

different technologies (RNA-seq vs. scRNA-seq, respec-

tively) on different sample sizes (105 vs. 982, respectively),

which prevents any cross-ancestry eQTL comparison (see

also Figure S12). Second, our analyses were restricted to da-

tasets of only two ancestries, which are the only ones with

both large functional and GWAS datasets available.

Ongoing efforts to generate both functional and GWAS da-

tasets in diverse ancestries would help in replicating our re-

sults. Third, our analyses were restricted to gene expression

and did not investigate the impact of ancestry-specific reg-

ulatory elements (such as enhancers), whereas chromatin

signals have been found more ancestry-specific than

gene expression.25 We anticipate that generating diverse
urnal of Human Genetics 111, 2117–2128, October 3, 2024 2125



functional datasets (such as single-cell ATAC-seq) in

diverse ancestries will help in investigating ancestry-spe-

cific regulation at a finer scale. Fourth, our analyses were

restricted to seven main PBMC types, which limits the

characterization of rarer cell types as well as that of the

cellular composition of each main cell type. Fifth, our

approach assumes the need for distinct ancestry groups

and is not applicable to admixed individuals. Admixture

can be leveraged to estimate the correlation of causal effect

sizes of an ancestry within two different populations (i.e.,

European ancestry within European Americans and ad-

mixed African Americans, as in Patel et al.8) or to estimate

correlation of causal effect sizes of multiple ancestries

within an admixed population (i.e., African and European

ancestries within admixed African Americans, as in

Patel et al.8,9). Thus, we anticipate that methodological

development leveraging admixed individuals to partition

ancestry-specific effects across functional annotations

will improve our understanding of ancestry-specific

causal effect sizes. Finally, because genetic ancestry is

multidimensional and continuous,58–60 assuming distinct

ancestry groups also fails to adequately capture human ge-

netic diversity and gene expression variability within an

ancestry group. Specifically, by comparing pseudo-bulk

expression of ancDE genes across EAS and EUR individuals,

we observed gene expression variability across the two

ancestry groups (i.e., different variance in EAS and

EUR), which suggests that differential expression also oc-

curs within ancestry groups as defined in our analyses

(Figure S22). Despite these limitations, our results convinc-

ingly demonstrate that ancestry-specific effect sizes are en-

riched in genes with ancestry-specific regulation and

demonstrate the need to generate large single-cell and

GWAS datasets in diverse ancestries to improve our under-

standing of human diseases.
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